CARLEMAN INEQUALITIES FOR THE DIRAC AND LAPLACE OPERATORS AND STRONG UNIQUE CONTINUATION

  • KIM, YONNE MI (Dept. of Mathematics, Hong Ik University)
  • Received : 2001.12.24
  • Published : 2002.07.30

Abstract

Keywords

References

  1. Amer.J .Math. v.102 Uniqueness for the Characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities Alinhac;Baouendi
  2. Illinois J.Math. v.32 Weighted Soblev inequalities and Unique continuation for the Laplacian plus lower orrder terms Barcelo;Ruiz;Kenig;Sogge
  3. Ark. Mat. v.B26 Sur un Problem dunicite pour les systemes dequations aux derivees partielles a deux variables independent Carleman, T.
  4. Comm. Partial Differential Equations v.88 no.1 Uniqueness theorems for second order elliptic differential equations Hormander, L.
  5. Advances in Mathematics v.62 no.2 Carleman Inequalities for the Dirac und Laplace Operators and Unique Continuation Jerison, D.
  6. Ann. of Math. v.11 Unique continuation and absence of positive eingenvalues for Schrodinger perators Jerison, D.;Kenig, C.E.
  7. International Congress of Mathematicians Uniform Sobolev inequalities for second order differential opertors and unique continuation theorem Kenig, C.E.
  8. Proceedings in A.M.S. v.123 no.7 Carleman inequalities and strong unique continuation theorem for the Dirac operator Kim, Y.M.
  9. Kyungbook Mathematical Journal v.32 no.2 Carleman inequalities and strong unique continuation theorem for SchrOdinger operator Kim, Y.M.
  10. Oscillatory Integrals and Spherical Harmonies Sogge, C.
  11. Journal of A.M.S. v.2 no.3 Oscillatory Integrals and unique continuation for second order elliptic differential equations Sogge, C.
  12. Singular Integrals and Differentiability Properties of Functions Stein, E.M.
  13. Pseudodifferential Operators Taylor
  14. Bull. Amer. Math. Soc. v.81 A restriction theorem for the Fourier transform Tomas, P.