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1. Introduction

Let U be a non-empty connected open subset of R™, and u be
a solution of the differential equation

(A + Z a;0/0z; + b)u = 0.

Here A is the Laplace operator, a; € L"(R™),b € L*(R") for
some suitable r, s, The main theorem says if u vanishes to infinite
order at a point, then u = 0 identically. This is called a strong
unique continuation theorem because it says that the behavior of
a solution at a point determines the behavior in a neighborhood.
The main step is to prove Carleman inequalities. We need two
types of inequalities.
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decreasing. Once these two inequalities are proved a straightfor-
ward argument due to Carleman yields uniqueness. The key fea-
ture that distinguishes these inequalities from ordinary Sobolev
inequalities is that the constant €' is independent of the parame-
ter t. In [8] dual version of (1) has heen proved by finding a left
parametrix and adopting appropriate pseudo-differential oppera-
tor theories as in Jerison[5], and Sogge[10.11]. Also a brief history
on the unique continuation theory is given there. In this paper,
we will see that actually a left inverse operator exists and that
simplifies many steps. Borrowing from Alinhac- Baouendi [1] we
use the weight function ¢ defined implicitly by ¢(x) = ¥(y), y =
—(y) + e~ YW when y = log|z| < 0. The same weight function
was used in [8]. Then ¢! ~ |z|=*. This is an algebraic blow up
but still can be handled since u vanishes to infinite order at the
origin. This is better than |z|™* which Jerison used in [5] be-
cause of convexity: 8%y /0y? > e'¥. In [9] inequality (2) has been
proved for functions compactly supported in a shell using a weight
function ¢(x) = (log|x|)?/2. The idea was from Jerison [5]. We
also give a proof of a strong unique continuation theorem for the
Schodinger operator D + V., where D is the Dirac operator, and
V' is a potential function in some L? space.

2. Statements of Results

The Dirac operator is a first-order constant coefficient operator
on R" of the form

D = Z;L: L @;j0/0x,, where «, ..., are skew hermitian matri-
ces satisfying the Clifford relations:

aj = —aq; and ajoap + agaj = =20 J,k=1,....n.

Also D? = —A and Carleman estimates for D imply estimates
of type (1). Let ¢(x) = ¥(y) be defined as above.

THEOREM 1. Let n > 3. p = (6n—4)/(3n+ 2), i.e. 1/p—
1/2 = 1/v. withy = (3n —2)/2. There is a constant C' depending
only onn such that for allt € R

(1)

162 FI1 L2((=00.0)x S.dydu) < ClEPDfLn((~00.0)x S.dydw)
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for all f € C§°((—0,0) x 8. C™).
Moreover,

(2) eV FllL2((=00.0)x S.dydur < CHEPAF| Lo ((=00.0)x S dyduw)

for f € C§P((—00,0) x §).

COROLLARY 1. Let € be a connected. open subset of R™, n >
3. If Ve LY(Q: M(m.C)) and u satisfies Du € L*(2:C™), (D +
Viu=0in Qand [ lu(x)|?dz = 0(e™) for any N, then u is
identically zero in §2.

THEOREM 2. Letn > 3. Then there is a constant C depending
only on n such that

€' 0| | La((~ 00,0y x S.dydw) < CIe*® D)l Lo ((~00.0)x $.dyduw)

for all f € C§(R™\ 0) and for (1/q, 1/p) in the open triangle
ABC with vertices A(1/2,1/2), B(n/(2n—2),1/q), C((n?+2n —
4)/(2n — 2),1/q.) where

. n _1__n2+2n+4_1 g
2n—-1) ¢  2n-1) g n’

COROLLARY 2. Let 0 € U C R™ be an open set, u € H-?(U),
p = (6n —4)/(3n+ 2) , u satisfies the equation

(3) Aulz) + Z a;0/0z jul(zx) + bu(x) =0

where a; € L}, (R"), b € L} (R™), for r=(3n-2)/2, s > n/2
and

/ |[Vu(x)Pdz = / (u(x)|Pdx = 0(+™)
F<z|<r JE<zl<r
for any N, then u = 0 in U.

First, we want to set up some notations and elementary results,
following Jerison [5]

I8



46 Yonne Mi Kim

2.1. Polar coordinates

Let S denote the unit sphere in B*, Fory € R,andw € S.x =
eYw gives polar coordinates on R", i.e., y = loglz| and w = z/|z|.
The operator L = 3., ajay(x;0/0zx ~ 2480/8x;) acts only in
the w -variables— [L,0/0y] = 0. We will view L as an operator on
the sphere S. Let

&= Z a;xj/lz|, then
i=1 ‘

aD = e ¥(8/0y — L);
and since &° = —1,
(4) e¥D = &(0/0y — L)
Note that & is unitary and L* = L. If we recall that
(5) A =e (8 /0y* + (n - 2)8/3y + As),
where Ag denotes the Laplace-Beltrami operator of the sphere.
It follows from
D* =D, D?= -A that
(6) L(L+n-2)=—~Ag

In general if ¢y € C°°(R), then (4) implies that in polar coordinates
T = eYw,

(7) eV We¥ De W h = GAk
where A; = 8/0y — (t¢¥'(y) + L).

Now we want to prove theorem 1.

Proof of Theorem 1. We will try to show the following equiva-
lent inequality.

e fllL2(r- xs.dz) < CllAtfllLe(r- x5.02) for f € C(U)



Carleman inequalities for the Dirac and Laplace operators 47

Let 7 denote the projection of L?(S:C™) onto Ey = ker(L —
k). k € Z(See [5] for more details). We can rewrite

Acf =Y (03 = (1 (y) + k)i f.
k

First, consider the following operator
Q=d/dy—y.

In [5] Jerison exhibited the following exact formula for the symbol
of a left inverse of {: there is a unique operator B on R satisfying
BQ =1 and B(e~¥"/2) = 0 given by

Bf(y) = (1/27r)/Fo(y,??)ew"f(ﬂ)dn,whf’«?"e

(8)

oo o0
Fo(y,n) = \/5/ QMSQ"QSde(Zwiy"“(y2+7’2)/2—~/ o= —sly=in) gg.
0 0

Also the following symbol estimate is true.
(9) |
(8/8y)? (8/8) Foly, m)] < Cia(L+ly +inl)™' 77" j,1=0,1,..

Inspired from the classical case, we can find a left inverse operator

B, satisfying f(y) = BiA:f(y). If we assume B; has kernel K,
then the above is equivalent to

e f(y) = / K, (y, s)(0/0s — t'{s) + k)m f(s)ds

= [ (0705 ~ 10/ ) + DKy, s)muf (5)ds.

Let
Ki(y,s)=H(y~ 5)etPlul=v())+k(y—s)

Then

y 4 o ¥ c{y—8
Bumef(yw) = 3 [ OO (s, )w)ds.
L -
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This integral converges only for k < —t%'(y). On the other hand,
the fact that f € Cg°(R™ x §) and
(=0/0s — ty'(s) — k)e! P WI—vN+ky—s) — g
tells us ;
Kai(y,s) = (H(y — 5) — 1)et¥ ) —v())+k{y—s)

is another kernel. From this we have another expression which is
Bamie f(y, w) Z/ JetWWI=vN+R=9) 1, f(s )(w)ds

where the integral converges for k > —t4/(y). here g(s) is a cut off
function we introduce for later use such that ¢ € C™ which has
value 1 for s < 0, and equals 0 for s > 1. Then g(s)f(s) = f(s) for
§ < 0. Now we can write

y)?

9(s) = 9ly) = (s~ w0 w) + Wiy ),

where
h(y,s) = /01(1 — &Y'y +&(s~y)d¢ >0,

After substituting f(s) = [ f(me*ndn, andy—s=s', we get

Buefww) = Y [ ovutwn 7@, )wiesdrm,
where k k
o1 o (g k) = / Y OO - R )R (gl () > K).
Also -

Baf(y,w Z / a2,6(y, 1, k) f (1, ) (w)e¥dnmy
where

o2 s (g k) = — /w g(5)et W)=V () Hhly=s)+iGs—u)ngy
Y

(k> —ty'(y)). Since oy +(y, n, k) are defined only for —t9'(y) > k,
we want to extend this for k > —t9'(y). Also we want to extend
o2¢(y,m k) for k < —t’(y) . For that we will follow Stein’s
method ([12],p182).



Carleman inequalities for the Dirac and Laplace operators 49

LEMMA. There exist a continuous function ¢ defined on [1.oc)
which is rapidly decreasing at »c. that is ¢(X) = 0(A"N). as A —
oc. for every N, and which satisfies the following properties.

/ H(A)dA = 0, / Ad(N)dA = 0. for k=1.2....
1 1
With this definition, we can extend our symbol by

Fre(y. k) = o14(y, 0, k) (k < —t'(y))
- /1 o1e(yam (1 - 20k + 19 (1)) — 10 () B(A)dA
(k > —t"(y)).

52,¢(y777» k) - U2,t(ya'rb k) (k > '“M/}I(y))
- / a0 (1 (1= 20) (K + 19 (y)) — 19 (3)) (A)dA
(k < —t9'(3)).

Now we want to find the size of symbols. In [8] we have estimated
o14(y,m k) and o24(y,n, k). Then using those estimates we can
do the same for the extended symbols.

Claim
(10)
3] Cn

YN __8__ Aldmm-, <
l(ay) (67]) k al,t(yv"’ )[ = (\/m_\k |tt/)’(y) +k— i,”)M—i—erl

1= 1,2,

" (y) N
1+
U T ) k)

This can be proved by integration by parts and the following
properties of h(y, s).

e”¥ —~1+s

52

h(y.y — s) ~ e
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1 1

1¢7 Shyy~98) < se¥ for0<s<2
ey 1 | 1

eV — < h(y,y—s) <e¥— fors>?2
2s s

With these estimates, we can write B, as follows.

Bl,tf(ya w) = Z / 01,1:('3}, 7?; k)f(”* ')(w)eiyndn"rk
k

Baef () = Y [ analyn k)i, w)e Wy
k

Now we want to show the following estimates.

IBi,efllL2(r-xs.dz) < ClfllLrir- xs,dzy ¢ =1,2.

The main tool in the proof is the spherical restriction theorem of

C.Sogge[10].

THEOREM. Let & denote the projection operator from L?(S)
to the space of spherical harmonics of degree k. Then there is a

constant ¢ such that
”'fkgHLp’(s) < Ckl-z/"”ﬁ”L?(S)

where p = 2n/(n+2), p’ =2n/(n - 2).

Formula (6) implies that(L + (n — 2)/2)? = ~A, + (n — 2)?/4.

Hence

T = sgn(L+(n—2)/2) = (L +(n—2)/2)(=A, + (n —2)?/4)"1/2

is a classical pseudodifferential operator on S. Thus T is bounded
from L9(S;C™) to LY(S;C™) for all ¢, 1 < q < co. Moreover,

M = %(1 + Yk, k=0,1,2...

me=—-(1-T)k, k=1-n,-n,-n-1,...

SV
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Therefore, Sogge’s theorem implies that
ImkgllLer (siomy < CK 2™ lgllLe(siom).-
Define mas v by
M NG = {meg if M <k gN, 0 otherwise.}
The triangle inequality implies
7aa, w9l (5.0my S CN'2H(N = M + 1)lgllposiom)-
Next use a device due to P.Tomas[13]:
Imunalle = [ < maang.o > < lmaevsll gl
< CN'(N = M+ 1)|igll3s-
We conclude that
I ngllzes,omy < CNYP(N — M + 1)'2||gllLr(s.0m)-
Also by duality
173,89l o (s,0my € ONYP(N = M + 1) |g]| L2(s,0m).-
If we interpolate with the trivial estimate

Hrawgllessiomy < llgllecsiomy,

we find that
(11)
n-2 -

Ima nllLe(siomy < CIN T (N=M+1)"2)V214)g]| 12 05.0m),
for 2 < g <p' =2n/(n-2).

Let N be the integer satisfying 2V ! < 10e9/2¢1/2 < 2N Con-
sider a partition of unity {(bﬂ};};o of the positive real axis satis-
fying

N
Z dp(r)=1 allr >0,
B=0
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suppps C {r: 272 <r <28},8=1,2,..N - 1.

(12)  supppo C {r:r <1}, suppdn C {r:r > 5/400},

@/0r) da(r)| < Cr27P, 1=0,1..

Now using duality at (11) we get the spherical restriction the-
orem we need;
(11)
n-2 -
lIma,ngllLa(siemy < C(NTT (N =M+ 12219 g o oom,

on — 4 “,6n-»4
3n+2 1T 3, "¢

With this theorem we introduce partition of unity {¢z} satisfying
(12) and define

forg =p=

B _ 1
gl,t(yunv k) - ¢ﬁ(\/€i+ Itw,(y) + ,C K in!)”ht(ﬂ& D k)

Then o1 +(y, n, k) satisfies

|(8/0n)(8/8y)'a1.¢(y. 1, k)| < CiulVa + [ty (y) + k
= i)™ e+ [ty (y) + kD

[(8/80) (a1,4(y,m k) = o1e(y,m k +1))| < C;

(13) -(Va+ |ty (y) + k — in|) =27

From (13) and the property of |(8/0n) ¢s(r)| < 27#, we deduce
that the following inequalities hold uniformly for y € I = I, =
(=1, -1+ 1)

[(8/0nY Ff (y,n, k)| < C;(28 Va) 17,

(14) [(8/0n) (FL(y.n.k) = Ff (y,n.k +1))| < C;(28 /a) =27,
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Now define

Fﬁ fly,w) Z /01, y. 0 k)me f(n M w)e ’y”(ln

Then By, = Zﬂ o F. Let M = [~ty'{y) - 26 /a]. M’ = [M +
228 \/a) + 1. Denoto

T (yomg(w) =Y Ff (y,n. k)meg(w).
K

Here Ftﬂ (y,n,k) =0 unless M < k < M'. A summation by parts
gives

M/
T (y,m) =Y (FF (y,n, k)=F (g0, k+1)mas ke, forM <k < M.
M

From (11’) and (14) we obtain
CIED ( M kgL (s,om)

< C;(2°Va) ™t @)= 9] Lo csiom)
uniformly for y € 1. Define

1 A
K] (y,2) = :;;/Tfa(ym)e“’"dﬂ

4

= 5= @yt

’tZI]d,r]

(12))

Since the length of the interval in n where Tf is non-zero is less
than 2 x 28./a,

|mwaMMAWW)<cu+m&mwrw
(T (2[3\/5)"/2)1/2"UQHQHLP(S:C'")~
Note that

Pfﬂmw%j/Kﬂ%y~MvwﬂﬂwMM
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LEMMA. Let H(y.y') be a bounded operator from LP(S) to

L2(S) of operator norm < h(y — y') for each y.y' € R. Suppose
that h € L"(R) for 1/r +1/p =1+ 1/s. Then

Tf(y.w) = / H(y. ) f (' ) (w)dy’
satisfies

T fllLs(r-x5,d2) < 1MLyl fll e (R~ x5,d2)-

Applying the lemma when s == 2, we obtain for 3 < N — 1

WFL Nl2(r- xs.2) < [1(1+ 12 Vaz]) ™| Lean)

n=2 ~
(7T (28 a2 Y9\ 9|l Lo (R~ x 5,dz)»

forlel=141

Note that
12 +12°Vaz)) ™|z @sy < C(2PVa)~H.
Then for 2 = § — I = 325, and ! = 8= we obtain(after

some calculation)

< 02—-(n~-~2)ﬁ/7(e£y})m‘

WFL fllL2 (R x 5.d2) |fllze(r- x 5,dz)>

m > —1/3. Since 28 has negative power, if we sum the series in 3
we get exactly the same bound as in the L? — L9 estimate(8]i.e.,

N-1

1) FL FllLe(r- xs,envayduw) < ClFllLe(r= x5.et0~/9vayduw)-
B

Now the case 3 = N, we need a different estimate for F¥. We had

FY fly,w) = /U?Q(Wi, k) f(n, Yw)e*¥"dy.
k-
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Since oY had support where
[t (y) + k —in| = 2V Va.

we had
[ty (y) + k —in| > (1 + |y} + |k]) uniformly for y < 0. Hence
(15) »
[(0/0m)1 (8] 0y) " dio (y. . k)| < Cjm(1+ || + (k)71
j=0.1. ..

Here d}, is a difference operator of order 1 in the k variable. The
above estimate means that afft is a standard symbol in the (y.n. k)
variables of order -1. So F/¥ is a standard pseudodifferential op-
erator of order -1,(Taylor[13] p296) and we can write F{ as

FY f(y,w) = RKt«w.y).(w'.y'»f(w'.y')dw'dy’.
DX

Then the corresponding kernel K, has bounds

[Ke((w', ') (w, y))] < O

o'+ Jy =y’ )7

Hence F}Y is a bounded operator from LP — LP for J - 1=1
(Stein,[12],p128) i.e.,
WFY fllLo(r-x5.d2) < ClFllLr(R- xS.do)- (*)

On the otherhand, compactness of (w.w’) and n > 3 gives us
[ 1Ko e plawdy’ < €

and

/ Ko ). (. y))|dwdy < C.

Now we can apply Young's inequality to get L¥ — L? bounded-
ness, 1.e..

HEN fllrr- x50 < CHFlLr(r=x$.d0) (%)
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Now if we intrerpolate the above two estimates (*) , and (**) we
obtain

WFN fllanr- xs.d0) < CUfLo(R- x5.d2):

for all p < ¢ < p. And in particular this holds for q=2. So if we
combine this with 3 < N — 1 cases, we obtain

HBl,tfH[ﬂ(Rw x 8,65 gy < CHfHLP(R"xS,e“dedw)~

Exactly same process shows same inequality holds for By . Now

define .
P f= Z T f-
k< —te' (y) .
Pof= . mf
k>—td/ (y)

Then f = Pf + Pof, PLB1Acf = Pif, and PyB;Arf = Paf. Now

HfHLz(R‘ XS,E(”+§)ydyd‘w) - ||Plf + szHVLQ(R” xs,e("*i)”dydw)
S ”Plf“L'*’(R”xS,e("“"%)“'dydw)

+ HI)Zf“Lz(R“ xS,e("+§)ydydw)

= HPIBl,tAtfllbz(R— xS,e' "t 8V dyduy)

1P B2 eAufll g st g
< “Bl,tAtf”Lz(R~xs,g("*”‘ff)”dydw)

+ 1B2,t A2 fll 12 (g 5.0+ 89V dyans)
< 2C||Aef e (R~ x5,dz)-

This is our desired inequality, and using (7), this is equivalent to
the following estiamte.
(1)

e™ fllLz(r- x5 .en+ovaydwy < Clle eV Df||Lo(r-x5.envdydw)-

Now for the future use, we would like to note that the following
corollary also holds.
Claim.
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€™ FllLe(r-xs.d0) < CHe Dfllpo(r- x50y f € CF(R™ x S).

We can apply same argument as the L — L? estimate. The
idea is to prove slightly stonger estimate. i.e., (LP(R™ x §) —
LP(L%(S),dy) estimate.) In this context we want to show the
following

BiegllLe(z2(sy.dy) < Cllgllze(r-xs,d0) 1= 1,2
First we have
WKL (y, 2)gll13(s) < C(1+ |28 Vaz|)~
(T (27 V)™ ) 4 g] | Lo(s)
And
B - A i ’ /
FE () = [ KE oy~ )10 D w)ay'
LEMMA. Let H(y,y') be a bounded operator from LP(S) to

L?(S) of operator norm < h(y — y') for each y,y’ € R. Suppose
that h € L*(R). Then

Tf(y,w)= /H(y,y’)f(y')(u;)dy’
satisfies

UWT fller2(sy,ay) < NPyl fllLe(r- xs)-

Note that

3+ |28 Vaz]) ) 1 sy < C(28Va) ™1

Then the lemma implies

N-1
1D FP flleewes)ay < CFlLor=xs.et-<rvaydu)-
A
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On the other hand, for 4 = N, we need only

WEN Fllor(r- x5.d2) < Cl o (r~ x5.d2)- (%%)

After combining these two, we obtain

Bt fllLrz2(s),ay) < ClfllLo(r-xsetn-<rsruayaw). @ = 1.2.
Now we will prove our inequality. First, from the definition of
P;, i =1,2, it is easy to check

Pifllzeracsyayy < UFllLecz2(s).ay),

and

IfllLe(r-xs.d2) < ClflLriras),ay)-
Then the above inequalities and projection method give the de-
sired inequality.

(16) Lo (R~ x5,82) < CllAtSf | Lo(R- x$,dz)-

3. The Laplace operator

Proof of Theorem 3. We can decompose the right hand side of
(3) i.e.,

(" We™ Ae™ W) f(y, w) =} (8/By ~ t'(y) - k)(8/dy
k

- (y) +k+n - 2)6f(y. ) (w).

Let’s denote this as (A; f)(y, w). The first component appeared in
the Dirac operator case. On the other hand the second component
has a nice property, i.e. whose symbol ¢n-t(y) +k +n — 2 never
vanishes. If we denote o¢(y,n, k) be the symbol of the left inverse
of /0y — ty'(y) — k, then

a(y. . k)
-t (y)+k+n-2
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is a left parametrics. Now we want to inspect the property of the
left parametrics. Since

1

oy k) ~ —= o
t(J. ! ) \/(1: + ltlj”(y) + k . ,”,}]

a =t (y) ~ teV,

L

—eNy
1000

if we choose some large N;, depending on t such that te
then

1
oy, n k) < —=. fory > —Np.
ey, 1 )_ﬁ. for y > —Ny
On the other hand, for y < —Np, v/a is vanishing fast as y goes
to —oo. But we can choose t such that |t — y| > 1/4. Then in this

range t(y'(y) + 1) ~ te¥ << 1/10. So

6/ (y) + k= anl 2 | - t+ k—in| - [t (y) + 1.

And
( k) < 1 ¢ for y < —N,
a » 1, < \
o [ty (y) + k —an| — ¥y 0.
In either case,
oy, k ~
ou(y,m k) ~ 0(1), - (Y, k) o

in—ty'(yy+k+n—2

For f € C§°(R x §). denote

Uf(yanvk) i ']
Ff(y,w Z[ F— P S e f (0, ) (w)dn.

First we want to show the following inequality.
(17)
HEfl|Loixs.azy < Ce™ V3| fllLoxs.azy for f € C&(I x S).

Because of the behavior of o,(y.7.k). we want to proceed sepa-
rately depending on the size of y. As before we introduce partition
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of unity {¢s }g’zg of the positive real axis satisfying (12). First,
define

1
ol (y.n. k) = ¢a(~\/—-(;lw’(y) +k —in)og(y.mk)  y>—N,.

ol (1. k) = ¢a(te’ (y) + k - in)ow(y,m k) y < —No.

First, we will work on the case y > —N,. Then from (10) it is easy
to show

(10')
, o} (y, ., k)
I(B/dn) tz/)’(y) +k+n-2

In the case ,8 = N, from (15) we have
(10[/)

! N(y nak)
(0/0n)7d) e S <

With these symbol estimates, we need Sogge’s theorem for spher-
ical harmonics[10].

THEOREM. Let 1 < s<2(n—1)/n, r=mns'/(n~2). Then

ek Fllzr(smy < CKYE (| Flps(sm)-
Using the duality, this is equivalent to

1€k Fll e (sny < CRY* | Fll e gmy-

| < (2°Va)™* 9t B<N-1.

Cja(1 + [k + [n]) =274

From the conditions of r, s we have the relation £ — 1 > 2

z,
Also, ;17 - = > 2 Now if we interpolate above two inequalities,
we obtam

(18) 1€k fllLacsny < CEY || £l Lo(sn)s

for 1/q = t/r+(1-—t)/ﬁ 1/p=t/s+ (1 —-t)/r" and

1/r'=1-1/r > ?ﬁﬂ—w and 1/g— 1/p > 2/n.
Let

Z 1 ol (y,n, k) - A
Ji) — t ’ iy

B=01,..
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Then Ff f(y.w) = ¥, & [ K} (y.y') f(y/) (w)dy'. where

al (.. k) N
Klj y t Ak — /‘
(y,2 Z 27(/ M,D l/) + kg4 n— 2 néy. z=y—y

the integration in 7 is over an interval of length 2 x 2¢,/a. It turns
out Kfa (z) is a bounded operator from LP(S™) — L9(S™) whose
operator norm is bounded by

C2Va) (1 4128 Vaz|) .

Next, let 1/l +1/p=1/¢+ 1, and apply Young’s theorem and
obtain

EL fllarxs.dn) < (zﬂ\/a)t’lﬂ/sl(Qﬁ\/a)'mHf“LP(Ixs,da;)-

Since 28 has power 1 -1/l = 1/p—~1/q=2/n+6,and —1+1/s' <
~n/(2n — 2), we obtain

IJP(IXSdT) "

(19) 1> FL fllegxs.an < CEIIf
B

Now we want to estimate F/V.

It is obvious from (10”) that the operators (8/0y)?F}N and
A FN (with symbols

N N
2 a . ) P o (y,mk) : -
N mrrayieaa=s and  —k(k +n - "’)ir,«tuf'(y)+k+n~2)’ are
standard zero order multipliers.

They are therefore bounded from L? to L? for 1 < p < oc.

Sovolev theorem [4] implies

HAllLarxs) < CIO/0u)2 Rl Leirx sy + 1Akl Lrrxs):

for 1/p—1/q < 2/n, for all h € C3¢((—20, —Np) x S). So we find
that

HEN fllLa((=co.—Noyx5) < CUFI Lo ((—oc. - No)x$)-
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Now we want to show the claim. In (19) take § small enough and
use interpolation theorem with

NE fllzzaxsy € 67128 Vaz) " |f | L2ans,)

which implies || 3, FY fl|z2(1xs) < Ct=*3e=v/2||fl| a1 s).-

We gain some power of t after interpolation and obtain the desired
estimate (17) for 1/p — 1/g = 2/n — ¢. The case y < — Ny works
in a similar way and we will leave it to the reader. Since we have
the estimate only on J x S we want to extend this result to the
whole R~ x S, First we want to remind a result we had before.

(") 1€ fllLa(r- xs,etn+ervagawy < C'llet¥e? D || Lo(r- x ,dz)"

Now after replacing f = Dg in (1”), the above inequality implies
(20)
|l ¥ Df || L2(r- xs,enrovayawy S ClEY Y AF|o (- xs,envayduw)-

Since

||ch“%2(3w xS,dz) = I z O‘jaf/amj“%zm— x §,dx)
J

= Z Haf/aij%Q(R” xS,dz) = “Vf”%”(ﬂ‘ x S.dz)
J

we deduce from (17)
(2)
1OV | 12 (- x5 ,envdydw) < Clle™ @ Af|| Lor- x5,envdydw)-
On the other hand, By replacing f = Dg in (16) it follows
(16")
e €Y Df | Lo(R- x 8 ,etn+ev dyduw) < Clle" e A fllLo(R- x 5,envaydw)-
If we combine (16) and (16'), we have
(21)
metwfllLP(R"xS,e("“’”?*‘«Wdydw) < CHetwezyAf“LP(R’ x S,e"vdydw)-

With these estimates, we can continue to rewrite
f = Zj ¢;f, for {¢;} partition of unities, having support in
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(=j —5/4,—j+5/4) and for each z € R, there are only finitely

many '@} s such that ¢;(z) # 0. Then,
(22)

HfHL‘T(R' x 8, eln+2c0vdydw) < (Z ”%f{ f{{q(]vjxsiez(n%ﬂ‘lzq)y))l/q

J
<) 14603 Lo, x5 cnvayany)
]

Since

A5 f) = ($)F + Y #(0/0y — to' (y) — k)exf
k

+ > 05(0/0y — ' (y) + k +n — DExf + ¢ AlS.
k

We want to estimate each of them separately. First, we find
that the first and the last term on the right hand side after sum-
ming on j, are bounded by

CllALf || L (R~ x$,d)-

Claim We can get similar estimates for the intermediate
terms, i.e.,

Z |65 Z(B/ay =t (y) = kY& S|l Lo1, x 5,00m20m)
7 %
< CHAtfHLP(R’ x8,e?Vdydw)-

(**)
D185 D (8/8y — ' (y) + k + 1 = 2k SllLo(r, x50t wdyauy
j k

< CNAcfllLr (R~ x8,envdydw)-

Then after getting terms together, and from (22), (*), (**) we get

HfllLa(r- x8,etns2catrearmvayaw) < CHALSLr(r- x5.dr)-
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Now if we choose small €, then ¥ < e?4+2¢a/p_(16'), (21) and
the above inequality implies

(3) 1€ fliLa(r- x5.dz) < CleY Afl|Lr(r- x5.dz)-

Proof of the claim. Since
Z ||’ Z(B/@y ~ tp"(y) ~ k)& fllLe (1, x S.etn+20 v dydu)
j k

<O (0/8y = 19 (y) = kS | po(R- x5 etn 200w aydu)
P

= C||e¥e¥YDe™™ [ Lo(r- x8,etn+2e1vdyduw)
< C'||e¥e® e f||Lo(R- x$,envdydw)-

The last inequality follows from (16’). On the other hand, (**) is
equivalent to

Z”(ﬁ;‘fHLP(R— x 8,e(n+2)vdydw)
7

< C|| Y (9/dy — 9/ (y) = k)ekfllLo(R- x5.envaydu):
k

But the second inequality is (16) and we have proved the theorem.
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