Histological Periodontal Tissue Reaction to Rapid Tooth Movement by periodontal Distraction in Dogs

치주인대 신장에 의한 치아의 급속 견인 시 성견 치주조직의 변화

  • Chang, Young-Il (Department of Orthodontics, College of Dentistry, Seoul National University) ;
  • Kim, Tae-Woo (Department of Orthodontics, College of Dentistry, Seoul National University) ;
  • Choi, Hee-Young (Department of Orthodontics, College of Dentistry, Seoul National University)
  • 장영일 (서울대학교 치과대학 치과교정학교실) ;
  • 김태우 (서울대학교 치과대학 치과교정학교실) ;
  • 최희영 (서울대학교 치과대학 치과교정학교실)
  • Published : 2002.12.01

Abstract

The objective of this study was to evaluate the changes that occurred over time in the distracted periodontal ligament space following the rapid retraction of a tooth by periodontal distraction after bone undermining surgery had been conducted in the dogs. The upper second premolars were extracted on the left and right side in 4 male beagle dogs. Immediately after extraction, the interseptal bone distal to the upper first premolar was thinned and undermined by grooving to decrease the bone resistance. Activating an individualized distraction appliance at the rate of 0.225mm twice a day, the upper first premolar was retracted rapidly toward the extraction socket. Periodontal distractions were performed for 5, 10, and 20 days, and 20-day-distraction cases were followed by maintenance periods of 0, 14, 28, and 56 days. After 20 days of rapid retraction, the average distal movement of the upper first premolar was 5.02mm, and the average mesial movement of the upper third premolars serving as an anchorage unit was 0.18 mm. On histological examination, the regeneration of bone occurred in a highly organized pattern. Distracted periodontal ligament space was filled with newly formed bone oriented in the direction of the distraction, and this was followed by extensive bone remodeling. This result was similar to those observed in other bones after distraction osteogenesis. In the periodontal ligament, the relationship between collagen fibers and cementum began to be restored 2 weeks after the distraction was completed, and showed almost normal features 8weeks after the completion of the periodontal distraction. However, on the alveolar side, the new bone formation was still in process and collagen fiber bundles and Sharpey's fibers were not present 8 weeks after the completion of the periodontal distraction. Reactions in the periodontal ligament of the anchorage tooth represented bone resorption on the compressed side and new bone deposition on the tension side as occurred in conventional orthodontic tooth movement. In conclusion, the results of this study showed that periodontal structures on the distracted side of the periodontal ligament were regenerated well histologically following rapid tooth movement.

본 연구의 목적은 periodontal distraction을 통해 급속 견인된 치아의 치조골과 치주인대에서 일어나는 변화를 조직학적으로 관찰하고, 치주조직이 정상적으로 재생될 수 있는지를 규명하는 것이다. 4 마리의 성견을 대상으로 하여, 좌우 상악 제2소구치를 발치 후에 상악 제1소구치 원심측 치간골에 홈을 주는 치조골 수술을 통해 골 저항을 약화시키고 제1소구치와 제3소구치에 periodontal distraction 장치를 장착하였다. 장치는 0.225mm씩, 하루에 2회 활성화시키며 상악 제1소구치를 발치와 공간으로 급속 견인하였다. 치아의 급속 견인은 5 일, 10 일, 20 일간 시행하였으며, 20 일간 견인한 대상에서는 2 주, 4 주, 8 주 후까지 유지기간을 두었다. 20 일간의 periodontal distraction을 통해 상악 제1소구치는 평균 5.02mm 원심 이동하였고, 고정원인 제3소구치는 0.58mm 근심 이동하였다. 조직학적 검사에서 distraction된 치주인대 공간에서는 골 재생과 개조가 빠르게 일어나, 견인 10일에 유골조직이 치아의 견인방향에 평행하게 생성되었고, 새로운 골 조직의 형성과 골 개조를 통한 골 성숙은 periodontal distraction 방향을 따라 활발히 진행되었으며, 이는 다른 골의 distraction osteogenesis에서 나타나는 결과와 비슷하였다. 급속 견인된 치아의 치주인대는 상당히 넓게 나타났고, 교원섬유와 치아간의 정상 관계는 급속 견인이 끝난 후 2주에 나타나기 시작하여 8주에 거의 회복되었다. 그러나, 치주인대의 골 쪽에서는 치아 급속 견인 후 8주까지도 새로운 골이 계속 형성되고 있었고, 교원섬유속이나 Sharpey 섬유는 보이지 않았다. 고정원으로 이용된 치아 주위의 조직반응은 통상적인 교정치료에서와 같이 압박 측에서의 골 흡수와 신장 측에서의 골 형성 소견을 나타냈다. 이상의 결과로 볼 때, periodontal distraction을 통한 치아의 급속 견인 시, 치주인대 조직은 잘 반응하여 치주조직의 재생이 활발히 일어남을 알 수 있었다.

Keywords

References

  1. Reitan K. Some factors determining the evaluation of force in orthodontics. Am J Orthod 1957: 43 : 32-45 https://doi.org/10.1016/0002-9416(57)90114-8
  2. Reitan K. Tissue behavior during orthodontic tooth movement. Am J Orthod 1960: 46: 881-900 https://doi.org/10.1016/0002-9416(60)90091-9
  3. Reitan K. Effects of force magnitude and direction of tooth movement on different alveolar bonetypes. Angle Orthod 1964 : 34: 244-55
  4. Reitan K. Clinical and histological observation on tooth movement during and after orthodontic treatment. Am J Orthod 1967 : 53 : 721-45 https://doi.org/10.1016/0002-9416(67)90118-2
  5. Storey E. The nature of tooth movement. Am J Orthod 1973 : 63 : 292-314 https://doi.org/10.1016/0002-9416(73)90353-9
  6. Reitan K, Kvam E. Comparative behavior of human and animal tissue during experimental tooth movement. Angle Orthod 1971 : 41 : 1-14
  7. Azuma M. Study on histologic changes of periodontal membrane incident to experimental tooth movement. Bull Tokyo Med Dent UniV 1970: 17 : 149-78
  8. Rygh P. Ultrastructural changes In tension zones of rat molar periodontium incident to orthodontic tooth movement. Am J Orthod 1976: 70 : 268-81
  9. DeAngelis V. Observations on the response of alveolar bone to orthodontic force. Am J Orthod 1970: 58 : 284-94 https://doi.org/10.1016/0002-9416(70)90092-8
  10. Haas AJ. Rapid expansion of the maxillary dental arch and nasal cavity by opening of the midpalatal suture. Angle Orthod 1961 : 31 : 73-90
  11. Haas AJ. Palatal expansion: Just the beginning of dentofacial orthopedics. Am J Orthod 1970 : 57 : 219-55 https://doi.org/10.1016/0002-9416(70)90241-1
  12. Deguchi T, Kuroda T, Hunt NP, Graber TM. Long-term appli-cation of chincup force alters the morphology of the dolichofacial Class III mandible. Am J Orthod Dentofac Orthop 1999 : 116: 610-15 https://doi.org/10.1016/S0889-5406(99)70194-0
  13. Schudy FF. The vertical dimension of the human face. Houston: D. Armstrong Co.1992
  14. Schudy FF. Vertical growth versus anteroposterior growth as rela-ted to function and treatment. Angle Orthod 1964 : 34 : 75-93
  15. Ilizarov GA The tension-stress effect on the genesis and growth of tissue: II. The influence of the rate and frequency of distraction. Clin Orthop 1989 : 239: 263-285
  16. Storey E. Tissue response to the movement of bones. Am J Orthod 1973 : 64 : 229-47 https://doi.org/10.1016/0002-9416(73)90017-1
  17. Liou EJW, Huang S. Rapid canine retraction through distraction of the periodontal ligament. Am J Orthod Dentofac Orthop 1998 : 114: 372-82 https://doi.org/10.1016/S0889-5406(98)70181-7
  18. Ten Cate AR. repair and regeneration of dental tissue. In : Ten Cate AR ed. Oral histology-Development, structure, and function. St Louis: CV Mosby, 1994
  19. Boester C, Johnston L. A clinical investigation of the concepts of differential and optimal force in canine retraction. Angle Orthod 1974: 44: 113-9
  20. QUinn R, Yoshikawa D. A reassessment of force magnitude In orthodontics. Am J Orthod 1985 : 88 : 252-60 https://doi.org/10.1016/S0002-9416(85)90220-9
  21. Pilon JJGM, Kuijpers-Jagtman AM, Maltha JC. Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental study. Am J Orthod Dentofac Orthop 1996 : 110: 16-23 https://doi.org/10.1016/S0889-5406(96)70082-3
  22. Liou EJW, Polley JW, Figueroa AA. Distraction osteogenesis: The effects of orthodontic tooth movement on distracted mandibular bone. J Craniofac Surg 1998 : 9 : 564-71 https://doi.org/10.1097/00001665-199811000-00014
  23. Cope JB, Harper RP, Samchukov ML. Experimental tooth move-ment through regenerate alveolar bone: A pilot study. Am J Orthod Dentofac Orthop 1999 : 116: 501-5 https://doi.org/10.1016/S0889-5406(99)70179-4
  24. Liou EJW. Figueroa AA, Polley JW. Rapid orthodontic tooth mo-vement into newly distracted bone after mandibular distraction osteogenesis in a canine model. Am J Orthod Dentofac Orthop 2000 : 117: 391-8 https://doi.org/10.1016/S0889-5406(00)70158-2
  25. Karp NS, McCarth JG, Schreiber JS, Sissons HA, Thorne CH. Membranous bone lengthening: A serial histological study. Ann Plast Surg 1992 : 29 : 2-7 https://doi.org/10.1097/00000637-199207000-00002
  26. Komuro Y, Takato T, Harii K, Yonemara Y. The histologic analysis of distraction osteogenesis of the mandible i rabbits. Plast Reconstr Surg 1994 : 94 : 152-9 https://doi.org/10.1097/00006534-199407000-00017
  27. Roberts WE, Jee W. Cell kinetics of orthodontically stimulated and non-stimulated periodontal ligament in the rat. Archs Oral Biol 1974: 19: 17-21 https://doi.org/10.1016/0003-9969(74)90219-2
  28. Claflin RS. Healing of' disturbed and undisturbed extraction wounds. JADA 1936 : 23 : 945
  29. Amler MH, Johnson PL, Salman I. Histological and histochemical investigation of human alveolar socket healing In undisturbed extraction wounds. J Am Dent Assoc 1960 : 61 :32-44 https://doi.org/10.14219/jada.archive.1960.0152
  30. Huebash RF, Hansen LS. A histopathologic study of extraction wounds in dogs. Oral Surg, Oral Med & Oral Path 1969: 28 : 187-96 https://doi.org/10.1016/0030-4220(69)90286-2
  31. Beertsin W, McCuiloch CAG, Sodec J. The periodontal ligament: a unique, multifunctional connective tissue. Periodontology 2000 1997: 13 : 20-40 https://doi.org/10.1111/j.1600-0757.1997.tb00094.x