상수처리과정 중 제초제 molinate의 제거

Removal of Herbicide Molinate during treatment Processes for Drinking Water

  • 박주황 (경북대학교 농업생명과학대학 농화학과) ;
  • 박종우 (경북대학교 농업생명과학대학 농화학과) ;
  • 김종수 (경북대학교 농업생명과학대학 농화학과) ;
  • 김장억 (경북대학교 농업생명과학대학 농화학과)
  • Park, Ju-Hwang (Department of Agricltural Chemistry, Kyungpook National University) ;
  • Park, Jong-Woo (Department of Agricltural Chemistry, Kyungpook National University) ;
  • Kim, Jong-Soo (Department of Agricltural Chemistry, Kyungpook National University) ;
  • Kim, Jang-Eok (Department of Agricltural Chemistry, Kyungpook National University)
  • 발행 : 2002.08.31

초록

수도용 제초제로 널리 사용되는 molinate는 물에 대한 용해도가 매우 크기 때문에 상수원수로 유입될 가능성이 있다. 상수원수에 molinate가 유입되었을 경우 상수처리과정 중에서의 제거효율을 알아보기 위하여 본 연구를 수행하였다. 상수처리과정중 응집제로 poly aluminium chloride(PAC)를 사용하였을 경우에는 molinate는 거의 제거되지 않는 것으로 나타났다. 소독제로 NaCIO를 사용한 염소처리과정에서는 4시간까지 염소투입량을 증가시켜 줌에 따라서 $20.0%{\sim}39.8%$의 제거율을 나타내었다. 고도정수처리과정에 해당되는 오존접촉과정에서는 접촉시간을 1시간까지 두었을 때 $28.9%{\sim}$58.2%의 제거율을 나타내었다. 활성탄처리과정의 경우는 입상활성탄의 첨가량 달리 하였을 때 30분의 접촉시간이 지난 후 90%이상의 제거효율을 나타내었으며, 1시간 후에는 완전히 제거되는 것으로 나타났다. 활성탄의 형태에 따른 제거효율은 비표면적이 더 널은 분말활성탄이 입상활성탄을 사용하였을 때보다 다 높게 나타났다. 고도정수처리과정인 오존접촉과 활성탄처리과정을 연속적으로 행한 결과 비교적 짬은 처리 시간에도 불구하고 $93.9%{\sim}100% 제거되었다. 상수처리의 각 과정별 molinatr치 제거율을 계산하여 모식화한 결과 전체 system에서의 효율은 99.5%로 나타나 수중 molinate의 제거에 상당히 효율적인 것으로 나타났다.

Molinate, a thiolcarbamate herbicide widely used for control weeds in paddy soil, has been suspected for a possibile transportation into surface water due to its relatively high solubility in water. This study was performed to know that how much molinate could be removed during treatment processes for drinking water. The removal effciency of molinate in water was negligible in treatment process of polyaluminium chloride for coagulation. Molinate was gradually decreased up to 60.2% during contact time of 4 hours when chloride, an disinfectant used in water treatment system was treated. And in an hour treatment of ozone, molinate removal ranged $28.9%{\sim}58%$ However by treatment system of granular activated carbon, molinate was removed 93.9 to 100% at all concentrations used with a range of concentrations of granular activated carbon treated. The removal effciency of whole system simulated with removal efficiencies of molinate in each step of treatment processes was 99.5%. Therefore, if molinate happen to come into water treatment facilities, it could be removed effectively through the treatment processes.

키워드

참고문헌

  1. Tomlin, C. D. S. (2000) In The Pesticide Manual (12th ed.) Biidsh Crop protection Counca, Surrey, UK. pp. 847-849
  2. Park, C. K., Seo, Y. T, Lee, J. K. and Han, D. S. (1993) In The Biochemistry and Uses of Pesticides Shinil Press, Seoul. pp. 649-650
  3. Jeong, Y. H., Kim, J. E., Kim, J. H., Lee, Y. D., Lim, C. H. and Huh, J. H. (2000) In The Newest Pesticide Sigma Press, Seoul. pp. 1-5
  4. Agricultural Chemicals Industrial Association (2001) In Agrochemical Year Book Moonsun Publishing Co., Seoul. pp. 140-162
  5. Kollman, W. S. (1998) In Environmental fate of nwlinate US EPA, California
  6. Moon, Y. S. (1999) In Environmental Science Sigma Press, Seoul. pp. 337-347
  7. Hu, J. Y, Morita, T., Magara, Y. and Aizawa, T. (2000) Evaluation of reactivity of pesticides with ozone in water using the energies of frontier molecular orbitals. Wat. Res. 34, 2215-2222 https://doi.org/10.1016/S0043-1354(99)00385-1
  8. Lehtola, M. J., Miettinen, I. T, Vardainen, T., Myllykangas, T.and Martikainen, P. J. (2000) Microbially available organic carbon, Phosphoms, and microbial growth in ozonated drinking
  9. Gull$\'{o}$n, M. and Font, R. (2001) Dypamic pesticide removal with activated carbon Sbers. Wat. Res. 35, 516-520 https://doi.org/10.1016/S0043-1354(00)00262-1
  10. Tsunoda, Y, Ozawa, T. and Ando, J. (1998) Ozone treatment of coal- and coffee-based active carbons. J. Colloid Inter. Sci. 205, 265-270 https://doi.org/10.1006/jcis.1998.5601
  11. Lin, C. K., Tsai, T. Y, Liu, J. C. and Chen, M. C. (2001) Enhanced biodegradation of petrochemical wastewater using ozonation and BAC advanced treatment system. Wat. Res. 35, 699-704 https://doi.org/10.1016/S0043-1354(00)00254-2
  12. Choi, J., Kim, J. J. and Shin, Y. O. (1982) In Experimental Methods of Soil Analysis Hyungsul Press, Seoul. pp. 9-41
  13. WHO (1996) In Guidetines for Drinking Water Quatity, Volume 2 (2nd ed.)
  14. Soderquist, C. J., Bowers, J. B. and Crosby, D. G. (1977) Dissipation of molinate in a rice field. J. Agri. Food Chem. 25, 166-175 https://doi.org/10.1021/jf60209a017
  15. Choi, E. S. and Cho, K. M. (1994) In EnvironmentalEngineering Chungmoon Press, Seoul. pp. 32-35, pp. 196-197
  16. Kim, D. C., Bae, J. H. and Moon K. H. (2000) hi Chemistry for Environmental Engineering Donghwa Technology Publishing Co., Seoul. pp. 561-565
  17. Solomons, T. W. G. (1995) In Organic Chemistry John Wiley and Sons Inc., N.Y. pp. 553-558
  18. Hoigne, J. and Barder, H. (1976) The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Wat. Res. 10, 377-382 https://doi.org/10.1016/0043-1354(76)90055-5
  19. Keamey, P. C. and Roberts, T. (1998) In Pesticide Remediation in Soils and Water John Wiley and Sons Inc., N.Y. pp. 161-176
  20. Gottschalk, C., Libra, J. A. and Saupe, A. (2000) hi Ozonalionof Water and Waste Water WILEY-VCH, Weinheim. pp. 11-15
  21. Kang, J. H. (1997) The removal of micro-pollutants in surface water of nakdong river by ozone-activated carbon process. Ph.D. Thesis, Youngnam University, Kyungsan
  22. Krasner, S. W. (1989) The occurence of disinfection by-products in US drinking water. J. AWWA 81, 41-49
  23. Reckhow, D. A. (1984) The removal of organic halide precursors by preozonation and alum coagulation. J. AWWA 76, 154-157
  24. Kaiga, N. (1990) Removal of total organic carbon by ozone and biological activated carbon. J. AWWA 59, 13-19
  25. Jang, S. I. (1999) Removal of pesticides by treatment of ozone and activated carbon in the dnnk water treatment. MS. Thesis, Kyungpook National University, Taegu