Optimization of Culture Conditions and Encapsulation of Lactobacillus fermentum YL-3 for Probiotics

가금류 생균제 개발을 위한 Lactobacillus fermentum YL-3의 배양조건 최적화 및 캡슐화

  • Kim, Kyong (Department of Food Science and Technology, Chungbuk National University) ;
  • Jang, Keum-Il (Department of Food Science and Technology and Research Center for Bioresource and Health, Chungbuk National University) ;
  • Kim, Chung-Ho (Department of Food and Nutrition, Seowon University) ;
  • Kim, Kwang-Yup (Department of Food Science and Technology and Research Center for Bioresource and Health, Chungbuk National University)
  • 김경 (충북대학교 식품공학과) ;
  • 장금일 (충북대학교 식품공학과 및 생물건강산업개발연구센터) ;
  • 김정호 (서원대학교 식품영양학과) ;
  • 김광엽 (충북대학교 식품공학과 및 생물건강산업개발연구센터)
  • Published : 2002.04.01

Abstract

This experiment was performed to improve the stability of Lactobacillus fermentum YL-3 as a poultry probiotics. The culture conditions that improve acid tolerance of L. fermentum YL-3 were investigated by changing several factors such as medium composition, temperature, anaerobic incubation and culture time. Also, L. fermentum YL-3 was encapsulated with alginate, calcium chloride and chitosan. The stable culture conditions of L. fermentum YL-3 were obtained in anaerobic incubation using MRS media without tween 80 for 20 hour at $42^{\circ}C$. The capsule after treatment with 1% chitosan was formed close membrane by a bridge bond. Immobilization of L. fermentum YL-3 in capsule was observed by confocal laser scanning microscopy, and cell viability was $2.0{\times}10^9\;CFU/g$ above the average. L. fermentum YL-3 capsule after acid treated at pH 2.0 for 3 hour survived about 40%, but those encapsulated with 1% chitosan survived about 65%. Survival rate of capsule stored at room temperature decreased about $2{\sim}3$ log cycle during 3 weeks, but viability of capsule stored at $4^{\circ}C$ during 3 weeks maintained almost $10^8\;CFU/g$ levels.

본 실험에서는 L. fermentum YL-3의 생존에 관한 연구로 살아 있는 상태로 위를 거쳐 장내에 정착하여 생균제로서의 기능을 수행할 수 있도록 내산성과 저장성에 초점을 맞추었다. 유산균 성장촉진 물질로 첨가되어 온 tween 80 성분의 제거가 pH 2.0에서 L. fermentum YL-3의 내산성을 약 1 log cycle 정도 향상시켰다. 지방산 분석에서는 세포의 유동성 및 동결 등에 저항성을 가진다고 보고되는 $C_{19:0}\;cyc\;{\omega}8c(lactobacillic\;acid)$의 성분이 24.6% 증가함으로써 내산성이 향상됨을 알 수 있었다. 온도별에서도 배양 온도가 상승할수록 내산성은 향상되었으며 배양시간 역시 길수록 향상되나 생균수를 고려해야 하므로 $42^{\circ}C$의 배양온도에서 대수기 말기의 균제를 이용하였다. 그래서 최종 배양 조건은 tween 80이 제거된 $MRS^-$ 배지에서 $20{\sim}24$시간 $42^{\circ}C$에서 혐기 배양을 실시한 균체를 capsule 제도에 이용하였다. Alginate capsule이 산, 열, 인산염 등에 풀어지는 단점을 가져 무독성의 1% chitosan을 이용하였으며 표면의 관찰 결과, chitosan처리 후 가교 결함에 의하여 더욱 촘촘한 막이 형성되었으며 alginate capsule에서 여러 군데 보이던 미세 구멍이 줄었으며 CLSM을 이용한 L. fermentum YL-3의 포집은 안정한 상태로 포집 균수는 약 $2.0{\times}10^9\;CFU/g$ 정도였다. 캡슐화된 L. fermentum YL-3의 내산성에서는, 3시간 동안 pH 2.0에서 alginate capsule은 약 40 %가 생존한 반면 chitosan 처리 후의 alginate capsule은 약 65% 정도로 생존율의 향상을 보였다. 캡슐화된 L. fermentum YL-3의 저장성에서는 상온인 $25^{\circ}C$에서는 초기 균수에서 1주 사이 $2{\sim}3\;log\;cycle$정도로 급격히 사멸되었으며 chitosan 처리구나 zeolite 처리구에 의한 상온에서의 저장성 향상에서는 영향을 미치지 못했다. $4^{\circ}C$에서는 $2.0{\times}10^9\;CFU/g$이었던 초기균수가 3주까지 모두 $10^8\;CFU/g$ 이상의 생존율을 나타내었으며 특히 chitosan으로 처리한 capsule의 저장성은 3주 후 약 24% 정도로 alginate capsule에 비해 생존율이 높았다.

Keywords

References

  1. Mundt, J.O. Enterococci; In Bergey's manual of systematic Bacte-riology, Vol. 2, p. 1063, Williams & Wilkins, London, (1986)
  2. Promspone, B., Morishita, T.Y., Aye, P.P, Cobb, C.W., Reldkamp,A. and Clifford, J.R. Evaluation of avian specific probiotic and Salmonella typhimurium-specific antibodies on the colonization of Salmonella typhimurium in broiler. J. Food Protec. 61: 176-180(1998) https://doi.org/10.4315/0362-028X-61.2.176
  3. Cho, M.K., Kim, K., Kim, C.H. and Kim, K.Y. Isolation and characterization of Lactobacillus fermentum YL-3 as a poultry probiotic. Korean J. Appl. Microbiol. Biotechnol. 28: 279-284(2000)
  4. Sim, J.H., Kim, S.K., Baek, Y.J., Oh, T.K. and Yang, H.C. Influ-ence of culture conditions on acid tolerance of Lactobaciltus casei YIT 9018. Korean J. Appl. Microbiol. Biotechnol. 23: 17-23 (1995)
  5. Fuller, R. Probiotics in man and animal, J. Appl. Bacteriol. 66:365-378 (1989) https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  6. Kleanhammer, T.R. Microbiological consideration in selection and preparation of Lactobacillus strains for use as dietary. J. Dairy Sci. 65: 1339-1349 (1982) https://doi.org/10.3168/jds.S0022-0302(82)82351-5
  7. Shin, M.S., Kim, H.M., Kim, G.T., Huh, C.S., Bae, H.S. and Baek, Y.J. Selection and characteristic of Lactobacillus acidophilus isolated from Korean feces. Korean J. Food Sci. Technol. 31:495-501 (1999)
  8. Conway, P.L. and Goldin, B.R. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci.70: 1-12 (1987) https://doi.org/10.3168/jds.S0022-0302(87)79974-3
  9. Mcdonald, L.C., Fleming, H.P. and Hassan, H.M. Acid tolerance of Leuconostoc mesenteriodes and Lactobacillus plantarum. Appl.Environ. Microbiol. 56: 2120-2124 (1990)
  10. Park, C.J., Pyeon, J.S., Cho, Y.K., Hong, S.S. and Lee, H.S. Characteristics of Enterococcus sp. isolated from animal intestine and its powder. Korean J. Appl. Microbiol. Biotechnol. 24: 393-398(1996)
  11. Johnsson, T., Nikkila, P, Toivonen, L., Rosenqvist, H. and Laakso, S. Cellular fatty acid profiles of Lactobacillus and Lacto-coccus strains in relation to the oleic acid content of the cultiva-tion medium. Appl. Environ. Microbiol. 61: 4497-4499 (1995)
  12. Nikkila, P, Johnsson, T., Rosenqvist, H. and Toivonen, L. Effect of pH on growth and fatty acid composition of Lactobacillus buchneri and Lactobacillus fermentum. Appl. Biochem. Biotech.59: 245-258 (1996) https://doi.org/10.1007/BF02783568
  13. Dziezak, J.D. Microencapsulation and Encapsulated Ingredient.Food Technol. 42: 136 (1988)
  14. Cho, Y.H., Shin, D.S. and Park, J.Y. Microencapsulation technol-ogy of food industry. Food Sci. Ind. 30: 98-111 (1997)
  15. Chang, H.N. and Seong, G.H. Microencapsultion of recombinant Saccharomyces cerevisiae cells with invertase activity in lipid-core alginate capsules. Biotech. Bioeng. 51: 157-162 (1996) https://doi.org/10.1002/(SICI)1097-0290(19960720)51:2<157::AID-BIT4>3.0.CO;2-I
  16. Bartkowiak, A. Alginate-oligochitosan microcapsules. II. Control of mechanical resistance and permeability of the membrane, Chem. Mater. 12: 206-212 (2000) https://doi.org/10.1021/cm991128m
  17. Kim, J.G., Lee, S.H., Lee, C.H., Lee, N.S., Son, Y.S. and Lim, S.K. Field treatment of cow manure originated from the clay mineral feeding and the change of nitrogen in soils. Korean J. Environ. Agri. 18: 366-371 (1999)
  18. Hassan, A.N. and Frank, T.F. Observation of encapsulated lactic caid bacteria using confocal laser microscopy, J. Dairy Sci. 78:2624-2628 (1995) https://doi.org/10.3168/jds.S0022-0302(95)76891-6
  19. MID. Inc. Operating manual Ver 6, Sherlock microbial identifica-tion system
  20. Kim, H.S. Studies on the viability of Lactobacillus acidophitus IFO 3205 by microencapsulation, Ph.D. dissertation, Seoul National University, Seoul (1990)