DOI QR코드

DOI QR Code

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts


Abstract

Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.

Keywords

References

  1. Grenoble, D. C.; Estadt, M. M. J. Catal. 1981, 67, 90. https://doi.org/10.1016/0021-9517(81)90263-3
  2. Keiski, R. L.; Desponds, O.; Chang, Y. F.; Somorjai, G. A. Appl. Catal. 1993, 101, 317. https://doi.org/10.1016/0926-860X(93)80277-W
  3. Rhodes, C.; Hutchings, G. J.; Ward, A. M. Catalysis Today 1995, 23, 43. https://doi.org/10.1016/0920-5861(94)00135-O
  4. Kreuzer, L. B. Anal. Chem. 1978, 50, 597. https://doi.org/10.1021/ac50026a014
  5. Jovicevic, S.; Skenderi, S.; Knjevic, N. Spect. Lett. 1981, 14, 415. https://doi.org/10.1080/00387018108062601
  6. Choi, J. G.; Diebold, G. J. Anal. Chem. 1987, 59, 519. https://doi.org/10.1021/ac00130a031
  7. Jung, H. J.; Lim, J. T.; Lee, S. H.; Kim, Y. R.; Choi, J. G. J. Phys. Chem. 1996, 100, 10243. https://doi.org/10.1021/jp952985q
  8. Kim, S. H.; Choi, J. G.; Cho, U. I. Rev. Sci. Instrum. 1998, 69, 3379. https://doi.org/10.1063/1.1149117
  9. Kim, S. J.; Byun, I. S.; Han, H. Y.; Ju, H. L.; Lee, S. H.; Choi, J. G. Appl. Catal. A, General 2002, 234, 35. https://doi.org/10.1016/S0926-860X(02)00200-4
  10. Keiski, R. L.; Salmi, T.; Niemisto, P.; Ainassaari, J.; Pohjola, V. J. Appl. Catal. A 1996, 137, 349. https://doi.org/10.1016/0926-860X(95)00315-0
  11. Chinchen, G. C.; Spencer, M. S. J. Catal. 1988, 112, 325. https://doi.org/10.1016/0021-9517(88)90145-5
  12. Kofstad, P. Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides; Wiley-Interscience: New York, 1972.
  13. Tinkle, M.; Dumesic, J. A. J. Catal. 1987, 103, 65. https://doi.org/10.1016/0021-9517(87)90093-5
  14. Oki, S.: Mezaki, R. J. Phys. Chem. 1973, 77, 1602.
  15. Bohlbro, H. An Investigation on the Kinetics of the Conversion of CO with Water Vapor over Iron Oxide Based Catalysts; Topsoe, H., Ed.; Gjellerup: Copenhagen, 1969.
  16. Garbassi, F.; Petrini, G. J. Catal. 1984, 90, 106. https://doi.org/10.1016/0021-9517(84)90090-3
  17. Nakamura, J.; Campbell, J. M.; Campbell, C. T. J. Chem. Soc. Faraday Trans. I 1990, 86, 2725. https://doi.org/10.1039/ft9908602725
  18. Campbell, C. T.; Daube, K. A. J. Catal. 1987, 104, 109. https://doi.org/10.1016/0021-9517(87)90341-1
  19. Chinchen, G. C.; Spencer, M. S.; Waugh, K. C.; Whan, D. A. J. Chem. Soc. Faraday Trans. I 1987, 83, 2193. https://doi.org/10.1039/f19878302193
  20. Salmi, T.; Harakarainen, R. Appl. Catal. A 1989, 49, 285. https://doi.org/10.1016/S0166-9834(00)83024-9
  21. Campbell, J. M.; Nakamura, J.; Campbell, C. T. J. Catal. 1992, 136, 24. https://doi.org/10.1016/0021-9517(92)90103-O
  22. Cimino, A.; Carra, S. Electrodes of Conductive Metallic Oxides; Trasatti, S., Ed.; Elsevier Sci.: New York, 1980; Chap. 2.
  23. Oveson, C. V.; Clausen, B. S.; Hammershoi, B. S.; Steffensen, G.; Askgaard, T.; Chorkendorff, I.; Norskov, J. K.; Rasmussen, P. B.; Stoltze, P.; Taylor, P. J. Catal. 1996, 158, 170. https://doi.org/10.1006/jcat.1996.0016

Cited by

  1. Nanoparticles in a Mesoporous Core/Shell Silica Microsphere and Their Catalytic Activity vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3712
  2. Conversion of CO2 to CO with CH4 over Ni/SiO2 Catalyst: Photoacoustic Measurements of Reaction Rate vol.25, pp.8, 2004, https://doi.org/10.5012/bkcs.2004.25.8.1253
  3. A review on gasification of biomass vol.13, pp.1, 2002, https://doi.org/10.1016/j.rser.2007.07.001
  4. Kinetic Investigation of CO2 Reforming of CH4 over Ni Catalyst Deposited on Silicon Wafer Using Photoacoustic Spectroscopy vol.31, pp.5, 2002, https://doi.org/10.5012/bkcs.2010.31.5.1295