DOI QR코드

DOI QR Code

A Convergent Synthesis of Bis-2-oxo Amide Triacylglycerol Analogues as Potent Lipase Inhibitors Using Acyl Cyanophosphorane Methodology

  • Published : 2002.02.20

Abstract

A number of bis-2-oxo amide triacylglycerol analogues, a recently reported potent human gastric lipase inhibitor and its new analogues, have been prepared starting from 1,3-dibromo-2-propanol utilizing acyl cyanophosphorane methodology as a key step in a convergent manner. The key coupling reaction has been accomplished at -$78^{\circ}C$ between 1,3-diamino-2-propanol derivative and the labile diketo nitriles, derived from acyl cyanotriphenylphosphoranes upon oxidizing with $O_3$, under mild condition in moderate yields.

Keywords

References

  1. Ransac, S.; Gargouri, Y.; Marguet, F.; Buono, G.; Beglinger, C.; Hildebrand, P.; Lengsfeld, H.; Hadvary, P.; Verger, R. Methods Enzymol. 1997, 286, 191.
  2. Gargouri, Y.; Ransac, S.; Verger, R. Biochim. Biophys. Acta 1997, 1344, 6. https://doi.org/10.1016/S0005-2760(97)81102-2
  3. Marguet, F.; Cavalier, J.-F.; Verger, R.; Buono, G.; Eur. J. Org. Chem. 1999, 1671.
  4. Heck, A. M.; Yanovski, J. A.; Calis, K. A. Pharmocotherapy 2000, 20, 270. https://doi.org/10.1592/phco.20.4.270.34882
  5. Finder, N.; James, W. P. T.; Kopelman, P. G.; Lean, M. E. J.; Williams, G. Int. J. Obes. 2000, 24, 306. https://doi.org/10.1038/sj.ijo.0801128
  6. Ghomaschi, F.; Loo, R.; Balsinde, J.; Bartoli, F.; Apitz-Castro, R.; Clark, J. D.; Dennis, E. A.; Gelb, M. H. Biochim. Biophys. Acta 1999, 1420, 45. https://doi.org/10.1016/S0005-2736(99)00056-5
  7. Reynolds, L. J.; Lio, Y. C.; Hale, M. R.; Wasserman, H. H.; Dennis, E. A. J. Am. Chem. Soc. 1996, 118, 5519. https://doi.org/10.1021/ja953553w
  8. Simons, J.-W. F. A.; Cox, R. C.; Egmond, M. R.; Verjeij, H. M. Biochemistry 1999, 38, 6346. https://doi.org/10.1021/bi982498b
  9. Chiou, A.; Markidis, T.; Constantinou-Kokotou, V.; Verger, R.; Kototos, G. Org. Lett. 2000, 3, 347.
  10. Kotsovolou, S.; Chiou, A.; Verger, R.; Kototos, G. J. Org. Chem. 2001, 66, 962. https://doi.org/10.1021/jo005705y
  11. Boger, D. L.; Sato, H.; Lerner, A. E.; Hadrick, M. P.; Fecik, R. A.; Miyauchi, H.; Wilkie, G. D.; Austin, B. J.; Patricelli, M. P.; Cravatt, B. F. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 5044. https://doi.org/10.1073/pnas.97.10.5044
  12. Heck, A. M.; Yanovski, J. A.; Calis, K. A. Pharmcotheraphy 2000, 20, 270. https://doi.org/10.1592/phco.20.4.270.34882
  13. Mehdi, S. Bioorg. Chem. 1993, 21, 249. https://doi.org/10.1006/bioo.1993.1021
  14. Otto, H.-H.; Schirmeister, T. Chem. Rev. 1997, 97, 133. https://doi.org/10.1021/cr950025u
  15. Barbine, R. E.; Bender, S. L. Chem. Rev. 1997, 97, 1359. https://doi.org/10.1021/cr960370z
  16. Hagihara, M.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 6570. https://doi.org/10.1021/ja00042a053
  17. Fusetani, N.; Sugarawa, T.; Matsunaga, S.; Hirota, H. J. Am. Chem. Soc. 1991, 113, 7811. https://doi.org/10.1021/ja00020a080
  18. Kobayashi, J.; Itagaki, F.; Shigemori, H.; Ishibashi, M.; Takahashi, K.; Ogura, M.; Nagasawa, S.; Nakamura, T.; Hirota, H.; Ohta, T.; Nozoe, S. J. Am. Chem. Soc. 1991, 113, 7812. https://doi.org/10.1021/ja00020a081
  19. Ocain, T. D.; Rich, D. H. J. Med. Chem. 1992, 35, 451. https://doi.org/10.1021/jm00081a005
  20. Wipf, P.; Kim, H. J. Org. Chem. 1993, 58, 5592. https://doi.org/10.1021/jo00073a010
  21. Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett, R.; Carroll, R. M.; Straub, J. A.; Tkacz, J. N.; Wu, C.; Musso, G. F. J. Med. Chem. 1994, 37, 2918. https://doi.org/10.1021/jm00044a013
  22. Li, Z.; Ortega-Vilain A.-C.; Patil, G. S.; Chu, D.-L.; Foreman, J. E.; Eveleth, D. D.; Powers, J. C. Med. Chem. 1996, 39, 4089. https://doi.org/10.1021/jm950541c
  23. Kobayashi, T.; Tanaka, M. J. Organometal. Chem. 1982, 233, C64. https://doi.org/10.1016/S0022-328X(00)85589-8
  24. Wasserman, H. H.; Ho, W.-B. J. Org. Chem. 1994, 59, 4364 https://doi.org/10.1021/jo00095a005
  25. Wong, M.-K.; Yu, C.-W.; Yuen, W.-H.; Yang, D. J. Org. Chem. 2001, 66, 3606 https://doi.org/10.1021/jo0015974
  26. Wasseramn, H. H.; Petersen, A. K. Tetrahedron. Lett. 1997, 38, 953. https://doi.org/10.1016/S0040-4039(96)02488-4
  27. Wasserman, H. H.; Petersen, A. K. J. Org. Chem. 1997, 62, 8972. https://doi.org/10.1021/jo9718253
  28. Wasseramn, H. H.; Xia, M.; Petersen, A. K.; Jorgensen, M. R.; Curtis, E. A. Tetrahedron Lett. 1999, 40, 6163. https://doi.org/10.1016/S0040-4039(99)01143-0
  29. Wasserman, H. H.; Wang, J. J. Org. Chem. 1998, 63, 5581. https://doi.org/10.1021/jo980860m
  30. Wasseramn, H. H.; Lee, K.; Xia, M. Tetrahedron Lett. 2000, 41, 2511. https://doi.org/10.1016/S0040-4039(00)00217-3
  31. Lee, K.; Im, J.-M. Bull. Korean Chem. Soc. 2000, 21, 1263.
  32. Lee, K.; Im, J.-M. Tetrahedron Lett. 2001, 42, 1539. https://doi.org/10.1016/S0040-4039(00)02280-2
  33. Schiemenz, G. P.; Engelhard, H. Chem. Ber. 1961, 94, 578 https://doi.org/10.1002/cber.19610940304
  34. Chen, Y.; Heeg, M. J.; Braunschweiger, P. G.; Xie, W.; Wang, P. G. Angew. Chem. Int. Ed. Engl. 1999, 38, 1768 https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1768::AID-ANIE1768>3.0.CO;2-6
  35. Greene, T. W.; Wuts, P. G. Protective Groups in Organic Synthesis; John Wiley & Sons, INC.: New York, 1991; Chapter 2.
  36. Dueno, E. E.; Chu, F.; Kim, S.-I.; Jung, K. W. Tetrahedron Lett. 1999, 40, 1843. https://doi.org/10.1016/S0040-4039(99)00083-0
  37. Moore, A. T.; Rydon, H. N. Org. Syn. 1965, 45, 47 https://doi.org/10.15227/orgsyn.045.0047

Cited by

  1. Recent Developments in General Methodologies for the Synthesis of α-Ketoamides vol.116, pp.5, 2016, https://doi.org/10.1021/acs.chemrev.5b00443
  2. 아실 시아노포스포레인과 아민 유도체로 부터 γ-아미노부틸산에서 유도된 포스포리파제 A2 저해제의 효과적인 합성 vol.48, pp.2, 2004, https://doi.org/10.5012/jkcs.2004.48.2.161
  3. Diethyl [3-Cyano-2-Oxo-3-(Triphenylphosphoranylidene)propyl]phosphonate: A Useful Horner-Wadsworth-Emmons Reagent for α-Keto (Cyanomethylene)triphenylphosphoranes from Carbonyl Compounds vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1641
  4. 3-Oxo-2-(triphenyl-λ5-phosphanylidene)-4-(phenylsulfinyl)butanenitrile:An Efficient Reagent for α-Keto (Cyanomethylene)triphenylphosphoranesfrom Alkyl Bromides vol.30, pp.11, 2002, https://doi.org/10.5012/bkcs.2009.30.11.2521
  5. A New Synthesis of Triphenylphosphorane Ylide Precursors to α-Keto Amide/Ester and Tricarbonyl Units via Horner-Wadsworth-Emmons Reaction vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.2776
  6. A Versatile Synthesis of α-Keto (cyanomethylene)triphenylphosphorane Ylides from Alkyl Halides Utilizing a Noble Phenylsulfonyl Reagent vol.34, pp.10, 2013, https://doi.org/10.5012/bkcs.2013.34.10.2953
  7. S-[3-Cyano-2-oxo-3-(triphenyl-λ5-phosphanylidene)propyl] O-ethyl Carbonodithioate: A Novel Xanthate Reagent for the Synthesis of α-keto (cyanomethylene)triphenylphosphorane Yli vol.34, pp.12, 2002, https://doi.org/10.5012/bkcs.2013.34.12.3545