DOI QR코드

DOI QR Code

The Matrix Effect of Biological Concomitant Element on the Signal Intensity of Ge, As, And Se in Inductively Coupled Plasma/Mass Spectrometry


Abstract

The non-spectroscopic interference effects that occurred in inductively coupled plasma/mass spectrometry were studied for Ge, As and Se in human urine and serum. Many biological samples contain Na, K, Cl and organic compounds, which may cause the enhancement and depression on the analyte signal. The effect of 1% concomitant elements such as N, Cl, S, P, C, Na, and K on a 100 ㎍/L germanium, arsenic and selenium signal has been investigated by ICP/MS. The interference effects were not in the same direction. It appeared that concomitant elements such as Cl, S, and C induce an enhancement effect, whereas N and P did not show any significant effect. And, Na and K caused a depression. We have found a link between the abundance of analytes and the ionization potential of concomitant elements (eV), except carbon and nitrogen.

Keywords

References

  1. Tan, S. H.; Horlick, G. Appl. Spectrosc. 1988, 40, 445.
  2. Vaughan, M. A.; Horlick, G. Appl. Spectrosc. 1986, 40, 434. https://doi.org/10.1366/0003702864509006
  3. Gray, A. L. Spectrochim. Acta, Part B 1986, 41, 151. https://doi.org/10.1016/0584-8547(86)80147-1
  4. Date, A. R.; Cheung, Y. Y.; Stuart, M. E. Spectrochim. Acta, Part B 1987, 42, 3. https://doi.org/10.1016/0584-8547(87)80045-9
  5. Beauchemin, D.; Craig, J. M. Spectrochim. Acta, Part B 1991, 46, 603. https://doi.org/10.1016/0584-8547(91)80064-A
  6. McLaren, J. W.; Beauchemin, D.; Berman, S. S. J. Anal. At. Spectrom. 1987, 2, 277. https://doi.org/10.1039/ja9870200277
  7. Alves, L. C.; Wiederin, D. R.; Houk, R. S. Anal. Chem. 1992, 64, 1164. https://doi.org/10.1021/ac00034a016
  8. Branch, S.; Ebdon, L.; Ford, M.; Foulkes, M.; Oneill, P. J. Anal. At. Spectrom. 1991, 6, 151. https://doi.org/10.1039/ja9910600155
  9. Branch, S.; Corns, W. R.; Ebdon, L.; Hill, S.; Oneill, P. J. Anal. At. Spectrom. 1991, 6, 155. https://doi.org/10.1039/ja9910600155
  10. Buckley, W. T.; Budac, J. J.; Godfrey, D. V.; Koenig, K. M. Anal. Chem. 1992, 64, 299.
  11. Evans, E. H.; Ebdon, L. J. Anal. At. Spectrom. 1989, 4, 299. https://doi.org/10.1039/ja9890400299
  12. Evans, E. H.; Ebdon, L. J. Anal. At. Spectrom. 1990, 5, 425. https://doi.org/10.1039/ja9900500425
  13. Hansen, S. H.; Larsen, E. H.; Pritzl, G.; Cornett, C. J. Anal. At. Spectrom. 1992, 7, 629. https://doi.org/10.1039/ja9920700629
  14. Lyon, T. D. B.; Fell, G. S.; Hutton, R. C.; Eaton, A. N. J. Anal. At. Spectrom. 1988, 3, 265. https://doi.org/10.1039/ja9880300265
  15. Lyon, T. D. B.; Fell, G. S.; Hutton, R. C.; Eaton, A. N. J. Anal. At. Spectrom. 1988, 3, 601. https://doi.org/10.1039/ja9880300601
  16. Munro, S.; Ebdon, L.; McWeeny, D. J. J. Anal. At. Spectrom. 1986, 1, 211. https://doi.org/10.1039/ja9860100211
  17. Ridout, P. S.; Jones, H. R.; Williams, J. G. Analyst 1988, 113, 1383. https://doi.org/10.1039/an9881301383
  18. Sheppard, B. S.; Caruso, J. A.; Heitkemper, D. T.; Wolnik, K. A. Analyst 1992, 117, 971. https://doi.org/10.1039/an9921700971
  19. Tan, S. H.; Horlick, G. Appl. Spectrosc. 1986, 40, 445. https://doi.org/10.1366/0003702864508944
  20. Vanhaecke, F.; Vanhoe, H.; Dams, R.; Vandecasteele, C. Talanta 1992, 39, 373.
  21. Thompson, J. J.; Houk, R. S. Appl. Spectrosc. 1987, 41, 801. https://doi.org/10.1366/0003702874448265
  22. Doherty, W. Spectrochim. Acta, Part B 1989, 44, 263. https://doi.org/10.1016/0584-8547(89)80031-X
  23. Beauchemin, D.; Mclaren, J. W.; Berman, S. S. Spectrochim. Acta, Part B 1987, 42, 467. https://doi.org/10.1016/0584-8547(87)80024-1
  24. Olivares, J. A.; Houk, R. S. Anal. Chem. 1986, 58, 20. https://doi.org/10.1021/ac00292a008
  25. Gregoire, D. C. Spectrochim. Acta, Part B 1987, 42, 895. https://doi.org/10.1016/0584-8547(87)80100-3
  26. Gilson, G. R.; Douglas, D. J.; Fulford, J. E.; Halligan, K. W.; Tanner, S. D. Anal. Chem. 1988, 60, 1472. https://doi.org/10.1021/ac00165a024
  27. Evans, E. H.; Giglio, J. J. J. Anal. At. Spectrom. 1993, 8, 1. https://doi.org/10.1039/ja9930800001
  28. Vanhoe, H.; Goossens, J.; Moens, L.; Dams, R. J. Anal. At. Spectrom. 1994, 9, 177. https://doi.org/10.1039/ja9940900177
  29. Munro, S.; Ebdon, L.; McWeeny, D. J. J. Anal. At. Spectrom. 1986, 1, 211. https://doi.org/10.1039/ja9860100211
  30. Amarasiriwardena, C. J.; Lupoli, N.; Korrick, S.; Hu, H.; Potula, V. Analyst 1998, 123, 441. https://doi.org/10.1039/a704686c
  31. Abdallah, M. H.; Mermet, J. M. J. Quant. Spectrosc. Radiat. Transfer 1978, 19, 83. https://doi.org/10.1016/0022-4073(78)90042-0

Cited by

  1. A Computational Drug Metabolite Detection Using the Stable Isotopic Mass-Shift Filtering with High Resolution Mass Spectrometry in Pioglitazone and Flurbiprofen vol.14, pp.10, 2013, https://doi.org/10.3390/ijms141019716
  2. Risk Assessment of Heavy Metals through Modified Milk Powder and Formulas vol.33, pp.5, 2013, https://doi.org/10.5851/kosfa.2013.33.5.617
  3. Analysis of mass dependent and mass independent selenium isotope variability in black shales vol.29, pp.9, 2014, https://doi.org/10.1039/C4JA00124A
  4. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry vol.26, pp.4, 2015, https://doi.org/10.1007/s13361-014-1064-z
  5. Determination of ultra-trace elements in human plasma or serum by ICP-MS using sodium in the presence of carbon as a single calibration matrix-match component vol.30, pp.5, 2015, https://doi.org/10.1039/C5JA00011D
  6. Determination of trace elements in human urine by ICP-MS using sodium chloride as a matrix-matching component in calibration vol.8, pp.37, 2016, https://doi.org/10.1039/C6AY01877G
  7. Analytical Strategy for the Determination of Selenium in Biological Materials by Inductively Coupled Plasma-Mass Spectrometry with a Dynamic Reaction Cell vol.50, pp.14, 2017, https://doi.org/10.1080/00032719.2016.1273361
  8. Determination of Trace Levels of Elements in Urine by Inductively Coupled Plasma Mass Spectrometry vol.50, pp.2, 2004, https://doi.org/10.1248/jhs.50.164
  9. Application of Methane Mixed Plasma for the Determination of Ge, As, and Se in Serum and Urine by ICP/MS vol.24, pp.3, 2002, https://doi.org/10.5012/bkcs.2003.24.3.285
  10. Current Awareness in Journal of Mass Spectrometry vol.38, pp.4, 2002, https://doi.org/10.1002/jms.429
  11. Dissolved inorganic carbon effect in the determination of arsenic and chromium in mineral waters by inductively coupled plasma-mass spectrometry vol.599, pp.2, 2002, https://doi.org/10.1016/j.aca.2007.08.016
  12. Analysis of iron, zinc, selenium and cadmium in paraffin-embedded prostate tissue specimens using inductively coupled plasma mass-spectrometry vol.22, pp.4, 2002, https://doi.org/10.1016/j.jtemb.2008.03.010
  13. Metabolic Study of Stable Isotope Labeled Indolinone Derivative in Hepatocyte Cell by UPLC/Q TOF MS vol.32, pp.6, 2002, https://doi.org/10.1021/jasms.1c00146