DOI QR코드

DOI QR Code

Photoelectron Imaging Spectroscopy for (2+1) Resonance-Enhanced Multiphoton Ionization of Atomic Bromine

  • Kim, Yong-Shin (Micro-Electronics Technology Lab., Electronics and Telecommunications Research Institute) ;
  • Jung, Young-Jae (Samsung Electronics Co.) ;
  • Kang, Wee-Kyung (Division of Basic Science, Soong Sil University) ;
  • Jung, Kyung-Hoon (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology)
  • Published : 2002.02.20

Abstract

Two-photon resonant third photon ionization of atomic bromine $(4p^5\;^2P_{3/2}\;and\;^2P_{1/2})$ has been studied using a photoelectron imaging spectroscopy in the wavelength region 250 - 278 nm. The technique has yielded simultaneously both relative branching ratios to the three levels of $Br^+(^3P_2,\;^3P_{0.1}\;and^1D_2)$ with $4p^4$ configuration and the angular distributions of outgoing photoelectrons. The product branching ratios reveal a strong propensity to populate particular levels in many cases. Several pathways have been documented for selective formation of $Br^+(^3P_2)$ and $Br^+(^3P_{0.1})$ ions. In general, the final ion level distributions are dominated by the preservation of the ion core configuration of a resonant excited state. Some deviations from this simple picture are discussed in terms of the configuration interaction of resonant states and the autoionization in the continuum. The photoelectron angular distributions are qualitatively similar for all transitions, with a positive $A_2$ anisotropy coefficient of 1.0-2.0 and negligible $A_4$ in most cases, which suggests that the angular distribution is mainly determined by the single-photon ionization process of a resonant excited state induced from the third photon absorption.

Keywords

References

  1. Pratt, S. T.; Dehmer, J. L.; Dehmer, P. M. J. Chem. Phys. 1985, 82, 676 https://doi.org/10.1063/1.448544
  2. Pratt, S. T.; Dehmer, J. L.; Dehmer, P. M. Phys. Rev. A 1987, 36, 1702 https://doi.org/10.1103/PhysRevA.36.1702
  3. Kroll, S.; Lundberg, H.; Persson, A.; Svanberg, S. Phys. Rev. Lett. 1985, 55, 284 https://doi.org/10.1103/PhysRevLett.55.284
  4. Harbol, M. R.; Appling, J. P.; Goren, A. C. J. Chem. Phys. 1994, 101, 2659 https://doi.org/10.1063/1.467645
  5. Appling, J. P.; Harbol, M. R.; Edgington, R. A.; Goren, A. C. J. Chem. Phys. 1992, 97, 4041 https://doi.org/10.1063/1.463933
  6. Sanders, L.; Sappey, A. D.; Weisshaar, J. C. J. Chem. Phys. 1986, 85, 6952 https://doi.org/10.1063/1.451382
  7. Sanders, L.; Hanton, S. D.; Weisshaar, J. C. J. Chem. Phys. 1990, 92, 3485 https://doi.org/10.1063/1.457859
  8. Pratt, S. T. Phys. Rev. A 1986, 33, 1718 https://doi.org/10.1103/PhysRevA.33.1718
  9. Jung, Y.-J.; Kim, Y. S.; Kang, W. K.; Jung, K.-H. J. Chem. Phys. 1997, 107, 7187 https://doi.org/10.1063/1.474958
  10. Sato, K.; Achiba, Y.; Kimura, K. J. Chem. Phys. 1984, 80, 57 https://doi.org/10.1063/1.446440
  11. Ganz, J.; Lewandowski, B.; Siegel, A.; Bussert, W.; Waibel, H.; Ruf, M. W.; Hotop, H. J. Phys. B 1982, 15, L485 https://doi.org/10.1088/0022-3700/15/14/001
  12. Helm, H.; Bjerre, N.; Dyer, M. J.; Huestis, D. L.; Saeed, M. Phys. Rev. Lett. 1993, 70, 3221 https://doi.org/10.1103/PhysRevLett.70.3221
  13. Kang, W. K.; Kim, Y. S.; Jung, K.-H. Chem. Phys. Lett. 1995, 224, 183
  14. Kim, Y. S.; Kang, W. K.; Jung, K.-H. J. Chem. Phys. 1996, 105, 551 https://doi.org/10.1063/1.471908
  15. Krajnovich, D.; Zhang, Z.; Butler, L.; Lee, Y. T. J. Chem. Phys. 1984, 88, 4561 https://doi.org/10.1021/j150664a023
  16. Arepalli, S.; Presser, N.; Robie, D.; Gordon, R. J. Chem. Phys. Lett. 1985, 117, 64 https://doi.org/10.1016/0009-2614(85)80406-1
  17. Moore, C. E. Atomic Energy Levels, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. Cir. 35; U. S. Government Printing Office: Washington, D. C., 1971; Vol. III
  18. Lambropoulos , P. Adv. At. Mol. Phys. 1976, 17, 87
  19. Strand, M. P.; Hansen, J.; Chien, R.-L.; Berry, R. S. Chem. Phys. Lett. 1978, 59, 205 https://doi.org/10.1016/0009-2614(78)89079-4
  20. Wang, D.; Li, Y.; Li, S.; Zhao, H. Chem. Phys. Lett. 1994, 222, 167 https://doi.org/10.1016/0009-2614(94)00312-2
  21. Dixit, S. N.; McKoy, V. J. Chem. Phys. 1985, 82, 3546 https://doi.org/10.1063/1.448934
  22. Appling, J. R.; White, M. G.; Kessler, W. J.; Fernandez, R.; Poliakoff, E. D. J. Chem. Phys. 1988, 88, 2300 https://doi.org/10.1063/1.454065

Cited by

  1. Further Studies into the Photodissociation Pathways of 2-Bromo-2-nitropropane and the Dissociation Channels of the 2-Nitro-2-propyl Radical Intermediate vol.118, pp.26, 2014, https://doi.org/10.1021/jp502277v
  2. Photoelectron imaging following 2 + 1 multiphoton excitation of HBr vol.8, pp.25, 2006, https://doi.org/10.1039/b602435a
  3. Anomalous charge-transfer behavior in the scattering of hyperthermal Br+(3P2) on Pt(111) vol.117, pp.24, 2002, https://doi.org/10.1063/1.1529687
  4. The photodissociation of NO2 by visible and ultraviolet light vol.12, pp.48, 2002, https://doi.org/10.1039/c0cp01551b