DOI QR코드

DOI QR Code

Application of Monte Carlo Simulation to Intercalation Electrochemistry II. Kinetic Approach to Lithium Intercalation into LiMn2O4 Electrode

  • Kim, Sung-Woo (Corrosion and Interfacial Electrochemistry Research Laboratory at Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology) ;
  • Pyun, Su-Il (Corrosion and Interfacial Electrochemistry Research Laboratory at Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology)
  • Published : 2002.05.01

Abstract

The present article is concerned with the application of the kinetic Monte Carlo simulation to electrochemistry of lithium intercalation from the kinetic view point. Basic concepts of the kinetic Monte Carlo method and the transition state theory were first introduced, and then the simulation procedures were explained to evaluate diffusion process. Finally the kinetic Monte Carlo method based upon the transition state theory was employed under the cell-impedance-controlled constraint to analyse the current transient and the linear sweep voltammogram for the $LiMn_2O_4$ electrode, one of the intercalation compounds. From the results, it was found that the kinetic Monte Carlo method is much relevant to investigate kinetics of the lithium intercalation in the field of electrochemistry.

속도론적 관점에서 키네틱 몬테 카를로 방법의 전기화학적 리튬 인터칼레이션에로의 응용에 대하여 다루었다. 우선 키네틱 몬테 카를로 방법과 전이상태이론의 기본 개념을 소개하였고, 확산거동을 평가하기 위한 시뮬레이션 과정을 설명하였다. 마지막으로 인터칼레이션 화합물중 $LiMn_2O_4$전극에 대해 전류 추이곡선과 선형 포텐셜 전류곡선을 해석하기 위해서 전이상태이론에 근거한 키네틱 몬테 카를로 방법을 셀-저항 제어조건하에서 사용하였다. 이로부터 키네틱 몬테 카를로 방법이 전기화학분야에서 리튬 인터칼레이션의 속도론적 연구에 매우 유용함을 알 수 있었다.

Keywords

References

  1. D. T. Gillespie, J. Comp. Phys., 22,403 (1976) https://doi.org/10.1016/0021-9991(76)90041-3
  2. 1977 D. T. Gillespie, J. Phys. Chem., 81,2340 (1977) https://doi.org/10.1021/j100540a008
  3. J. J. Lukkien, J. P. L. Segers, P. A. J. Hilbers, R. J. Gelten and A. P. J. Jansen, Phys. Rev. E, 58,2598 (1998) https://doi.org/10.1103/PhysRevE.58.2598
  4. S. J. Mitchell, G. Brown and P. A. Rikvold, Surf. Sci., 471, 125 (2001) https://doi.org/10.1016/S0039-6028(00)00892-X
  5. C. Uebing and R. Gomer, J. Chem. Phys., 95,7626 (1991) https://doi.org/10.1063/1.461336
  6. C. Uebing and R. Gomer, J. Chem. Phys., 95,7636 (1991) https://doi.org/10.1063/1.461337
  7. C. Uebing and R. Gomer, J. Chem. Phys., 95,7641 (1991) https://doi.org/10.1063/1.461817
  8. C. Uebing and R. Gomer, J. Chem. Phys., 95,7648 (1991) https://doi.org/10.1063/1.461338
  9. R. Darling and J. Newman, J. Electrochem. Soc., 146,3765 (1999) https://doi.org/10.1149/1.1392547
  10. S. -W. Kim and S. -I. Pyun, Electrochim. Acta, 46,987 (2001) https://doi.org/10.1016/S0013-4686(00)00687-3
  11. K. W. Kehr and K. Binder, 'Simuladon of DiSusion in Lattice Gasesand Related Kinetic Phenomena', in Applications of the Monte Carlo Method in Stadstical Physics, ed. by K. Binder, 181-221, Springer-Verlg, New York (1984)
  12. R. Nassif, Y. Boughaleb, A. Hekkouh, J. F. Gouyet and M. Kolb, Eur. Phys. J. B, 1,453 (1998) https://doi.org/10.1007/s100510050208
  13. A. J. Bard and L. R. Paulkner, 'Electrochemical Methods: Fundamentals and Applicadons', 86-118, Wiley, New York (1980)
  14. S. -I. Pyun, 'Outlines of Electrochemistry of Materials', 226-286, Sigma press, Seoul (2001)
  15. K. Binder and D. W. Heermann, 'Monte Carlo Simulation in Statistical Physics - An Introduction', Springer-Verlag, New York (1997)
  16. R. Gomer, Rep. Prog. Phys., 53,917 (1990) https://doi.org/10.1088/0034-4885/53/7/002
  17. C. J. Wen, B. A. Boukamp, R. A. Huggins and W. Weppner, J. Electrochem. Soc., 126,2258 (1979) https://doi.org/10.1149/1.2128939
  18. A. J. Vaccaro, T. Palanisamy, R. L. Kerr and J. T. Maloy, J. Electrochem. Soc., 129,682 (1982) https://doi.org/10.1149/1.2123951
  19. K. Aoki, K. Tokuda and H. Matsuda, J. Electroanal. Chem., 146, 417 (1983) https://doi.org/10.1016/S0022-0728(83)80601-9
  20. Y. Gao, J. N. Reimers and J. R. Dahn, Phys. Rev. B, 54,3878 (1996) https://doi.org/10.1103/PhysRevB.54.3878
  21. H. -C. Shin and S. -I. Pyun, Electrochim. Acta, 45,489 (1999) https://doi.org/10.1016/S0013-4686(99)00270-4
  22. H. -C. Shin and S. -I. Pyun, Electrochim. Acta, 46,2477 (2001) https://doi.org/10.1016/S0013-4686(01)00457-1
  23. H. -C. Shin, S. -I. Pyun, S. -W. Kim and M. -H. Lee, Electrochim. Acta, 46, 897 (2001) https://doi.org/10.1016/S0013-4686(00)00676-9
  24. M. -H. Lee, S. -I. Pyun and H. -C. Shin, Solid State lonics, 140, 35 (2001) https://doi.org/10.1016/S0167-2738(01)00700-7
  25. S. -I. Pyun and S. -W. Kim, J. Power Sources, 97-98,371 (2001) https://doi.org/10.1016/S0378-7753(01)00550-X
  26. S. -W. Kim and S. -I. Pyun, Electrochim. Acta, 47,2843 (2002) https://doi.org/10.1016/S0013-4686(02)00173-1