Signal Set Partitioning을 이용한 격자 양자화의 비 손실 부호화 기법

Lossless Coding Scheme for Lattice Vector Quantizer Using Signal Set Partitioning Method

  • 김원하 (명지대학교 전자정보통신공학부)
  • Kim, Won-Ha (Myongju University, Division of Information & Communication Eng.)
  • 발행 : 2001.11.25

초록

격자 벡터 양자화의 비 손실 과정에서는 생성된 코드단어들을 radius 열과 Index 열로 열거한다. radius 열은 run-length 부호화한 한 다음 Entropy 부호화한다. 또한 index 열들은 이진의 고정길이로 표현한다. 비트율이 증가함에 따라 index 비트는 선형적으로 증가하여서 부호화 성능을 감소시킨다. 이 논문에서는, 넓은 비트율의 범위에서 index 비트를 줄이기 위해서, set partitioning 방식을 채택한 새로운 열거 알고리즘을 개발하였다. 제안된 열거 방법은 큰 index 값을 작은 값들을 천이 시켜서 index 비트를 줄인다. 제안된 비손실 기법을 웨이블릿 기반의 영상 부호화에 적용시켰을 때, 0.3 bits/pixel 이상의 비트룰에서 기존의 비손실 부호화 방식보다 10%이상의 비트율을 감소시켰다.

In the lossless step of Lattice Vector Quantization(LVQ), the lattice codewords produced at quantization step are enumerated into radius sequence and index sequence. The radius sequence is run-length coded and then entropy coded, and the index sequence is represented by fixed length binary bits. As bit rate increases, the index bit linearly increases and deteriorates the coding performances. To reduce the index bits across the wide range of bit rates, we developed a novel lattice enumeration algorithm adopting the set partitioning method. The proposed enumeration method shifts down large index values to smaller ones and so reduces the index bits. When the proposed lossless coding scheme is applied to a wavelet based image coding, the proposed scheme achieves more than 10% at bit rates higher than 0.3 bits/pixel over the conventional lossless coding method, and yields more improvement as bit rate becomes higher.

키워드

참고문헌

  1. J. Gibson and K. Sayood, 'Lattice quantization', Advances in Electronics and Electron Physics, vol. 72, pp. 259-330, Jun. 1988
  2. Z. M. Yusof and T.R. Fischer, 'An Entropy-Coded Lattice Vector Quantizer for Transform and Subband Image Coding', IEEE Trans. on Image Processing, vol. 5, pp. 289-298, Feb. 1996 https://doi.org/10.1109/83.480764
  3. M. Barlaud and P. Sol?and M. Antonini and P. Mathieu, 'Pyramidal Lattice Vector Quantization for Multiscale Image Coding', IEEE Trans. on Image Processing, vol. 3, pp.367-380, Jul. 1994 https://doi.org/10.1109/83.298393
  4. J. M. Moureaux and M. Antonini and M. Barlaud, 'Lattice vector quantization of image using a product code form and a new labelling method', SPIE, vol. 2308, no. 1, pp. 422-433, Sep. 1994 https://doi.org/10.1117/12.185985
  5. F. Chen and Z. Gao and J. Villasenor, 'Lattice Vector Quantization of Generalized Gaussian Sources', IEEE Trans. on Inform. Theory, vol. 43, no. 1, pp. 92-103, Jan. 1997 https://doi.org/10.1109/18.567652
  6. G. Ungerboeck, 'Channel Coding with Multilevel/Phase Signals', IEEE Trans. on Inform. Theory, vol. 28, no. 1, pp. 55-67, Jan. 1982
  7. K. A. Birney and T. R. Fischer, 'On the Modeling of DCT and Subband Image Data for Compression', IEEE Trans. on Image Processing, vol. 4, no. 2, pp. 186-193, Feb. 1995 https://doi.org/10.1109/83.342184
  8. T. R. Fischer, 'A Pyramid Vector Quantizer', IEEE Trans. on Inform. Theory, vol. 32, pp. 568-583, Jul. 1986
  9. A. C. Hung and E.K. Tsern and T.H. Meng, 'Error-resilient Pyramid Vector Quantization for Image Compression', IEEE Trans. on Image Processing, vol. 7, no. 10, pp. 1373-1386, Oct. 1998 https://doi.org/10.1109/83.718479
  10. G. K. Wallace, 'The JPEG Still Picture Compression Standard', Communications of the ACM, vol. 34, no. 4, pp. 30-44, Apr. 1991 https://doi.org/10.1145/103085.103089