Effect of Surface Charging on the SIMS Depth Profile of Bismuth Titanate Thin Film

SIMS 분석조건이 Bismuth Titanate 박막의 깊이방향 조성 해석에 미치는 영향

  • Kim, Jae Nam (Research Institute of Industrial Science and Technology) ;
  • Lee, Sang Up (Research Institute of Industrial Science and Technology) ;
  • Kwun, Hyug Dae (Research Institute of Industrial Science and Technology) ;
  • Shin, Kwang Soo (Research Institute of Industrial Science and Technology) ;
  • Chon, Uong (Research Institute of Industrial Science and Technology) ;
  • Park, Byung Ok (Department of Inorganic Materials Engineering, KyungPook National University) ;
  • Cho, Sang Hi (Department of Inorganic Materials Engineering, KyungPook National University)
  • 김재남 ((재) 포항산업과학연구원) ;
  • 이상업 ((재) 포항산업과학연구원) ;
  • 권혁대 ((재) 포항산업과학연구원) ;
  • 신광수 ((재) 포항산업과학연구원) ;
  • 전웅 ((재) 포항산업과학연구원) ;
  • 박병옥 (경북대학교 공과대학 무기재료공학과) ;
  • 조상희 (경북대학교 공과대학 무기재료공학과)
  • Received : 2001.08.20
  • Published : 2001.12.25

Abstract

The effect of SIMS analysis conditions such as mesh grid, offset voltage and ion species on the in-depth profile for bismuth titanate thin film was examined in terms of charging effect and detection limit. The results shows that the use of offset voltage -40 V reduces the charging effect and the detection limit. The employment of mesh grid in sample preparation leads to the reduction of the charging effect in small amount, but deteriorate the detection limit. Utilization of primary $O^-$ ion for SIMS analysis of bismuth titanate thin film showed almost the same effect as using offset voltage -40 V. However, it takes approximately triple acquisition time than using $O_2{^+}$ ion due to the poor beam current of the source in the experiment.

본 연구는 SIMS를 이용한 bismuth titanate 박막의 깊이방향 분석에 있어서 mesh grid를 사용한 경우와 사용하지 않은 경우, offset voltage를 사용한 경우와 사용하지 않은 경우 등 분석조건에 따른 charging effect 그리고 검출한계의 특성을 검토하고자 하였다. 결과에 따르면 -40 V의 offset voltage를 사용하였을 경우는 charging effect의 감소는 물론 검출한계도 낮출 수 있었으나 mesh grid를 사용하였을 경우에는 charging effect는 다소 줄일 수 있었으나 반면 검출 한계는 오히려 높아졌다. O- 일차이온을 적용한 경우는 -40 V의 offset voltage를 사용하였을 때와 동일한 효과를 얻을 수 있었다.

Keywords

References

  1. Thin Film Ferroelectric Material and Devices R. Ramesh
  2. Mater. Eng. v.11 no.2 C. Jovalekic;M. Zdujic;P. Osmokrovic
  3. J. Am. Ceram. Soc. v.83 no.3 H.S. Shulman;D. Damjanovic;N. Setter
  4. Mater. Lett. v.44 no.3/4 A.M. Umabala;M. Suresh;A.V. Prasadarao
  5. Secondary Ion Mass Spectrometry, Basic Instrumental aspect, Application & Trends A. Benninghoven;F.G. Rudenauer;H.W. Werner
  6. Secondary Ion Mass Spectrometry, A practical handbook for depth profiling & bulk impurity analysis R.G. Wilson;F.A. Stevie;C.W. Magee
  7. Practical Surface Analysis by Auger & X-ray Photolectron Spectroscopy D. Briggs;M.P. Seah
  8. J. Vac. Sci. Technol. v.A2 no.2 H.W. Werner;N. Warmoltz
  9. Secondary Ion Mass Spectrometry R.G. Wilson;F.A. Stevie;C.W. Magee
  10. Secondary Ion Mass Spectrometry R.G. Wilson;F.A. Stevie;C.W. Magee
  11. J. Appl. Phys. v.50 K. Wittmack
  12. J. Am. Ceram. Soc. v.83 no.5 P. Duran;C. Moure;M. Villegas;J. Taritai;A.C. Cabllero;J.F. Fernandez,2
  13. Proceeding of 23rd Annual Conference on Mass Spectrometry and Allied Topics Frank G. Sakiewiez
  14. J. Vac. Sci. Technol. v.A3 Howard E. Smith;G.H. Morrison;D.T. Hodul
  15. IMS 6F User's guide CAMECA
  16. J. Appl. Phys. v.47 H.W. Werner;A.E. Morgan
  17. Secondary Ion Mass Spectrometry R.G. Wilson;F.A. Stevie;C.W. Magee
  18. Secondary Ion Mass Spectrometry R.G. Wilson;F.A. Stevie;C.W. Magee
  19. Secondary Ion Mass Spectrometry, SIMS VI S.J.B. Reed;N.A. Trueman;J.V.P. Long;A. Benninghoven(ed);A.M. Huber(ed);H.W. Wener(eds)
  20. Secondary Ion Mass Spectrometry, SIMS VI R.L. Hervig;P. Williams;A.Benninghoven(ed);A.M. Huber(ed);H.W. Wener(eds)
  21. Methods of surface analysis v.1 A.W. Czandderna