References
- George E.P. Box and Gwilym M. Jenkins, Time Series Analysis: forecasting and control, Revised Ed. Prentice Hall, 1976
- Gareth Janacek and Louise Swift, Time Series forecasting, simulation, applications, Ellis Horwood, 1993
- Andreas S. Weigend and Neil A. Gershenfeld, Ed. TIME SERIES PREDICTION: Forecasting the Future and Understanding the Past, Addison-Wesley, 1994
- L.X. Wang, 'Fuzzy systems are universal approximators,' in Proc. of IEEE Int. Conf. Fuzzy Syst., San Diego, CA, pp. 1163-1170, 1992 https://doi.org/10.1109/FUZZY.1992.258721
- F. Scarselli and A. C. Tsoi, Universal Approximation Using Feedforward Neural Networks A Survey of Some Existing Methods, and Some New Results, Neural Networks, vol. 11, No.1, pp. 15-37, 1998 https://doi.org/10.1016/S0893-6080(97)00097-X
- L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall, 1994
- T. Takagi and M. Sugeno, Fuzzy Identification of Systems and its Application to Modeling and Control. IEEE Trans. Syst., Man, Cybern., vo1.15, pp.116-132, 1985
- L. X. Wang and J. M. Mendel, Generating fuzzy rules by learning from examples, IEEE Trans. Syst., Man, Cybern., vol. 22, pp. 1414-1427, Nov. 1992 https://doi.org/10.1109/21.199466
- S. H. Lee and I. Kim, Time sereis analysis using fuzzy learning, in Proc. Int. Conf. Neural Inform. Processing, Seoul, Korea, Oct. 1994, vol. 6 pp. 1577-1582
- C. C. Lee, 'Fuzzy logic in control systems: fuzzy logic controller-part I, II', IEEE Trans. Systems, Man and Cybernetics, vol. 20, no. 2, pp. 404-435, 1990 https://doi.org/10.1109/21.52551
- J. L. Castro, M. Delgade, and F. Herrera, A learning method of fuzzy reasoning by genetic algorithms, in Proc. 1 st Eur. Congress Fuzzy Intell. Technol., Aachen, Germany, Sept. 1993, pp.804-809
- Daijin Kim and Chulhyun Kim, Forecasting Time Series with Genetic Fuzzy Predictor Ensemble, in IEEE Trans. Fuzzy Systems, vol. 5 no.4, Nov. 1997, pp.523-535 https://doi.org/10.1109/91.649903
- R.J.S. Jang, Predicting chaotic time series with fuzzy IF-THEN rules, Proc. IEEE Second Int. Conf. On Fuzzy Systems, vol. 2, pp.1079-1084, 1993 https://doi.org/10.1109/FUZZY.1993.327364
- R. Kozma, N.N.Kasabov, and J.S.Kim, Integration of Connectionist Methods and Chaotic Time-Series Analysis for the Prediction of Process Data, International Journal of Intelligent Systems, Vol. 13, pp. 519-538, 1998 https://doi.org/10.1002/(SICI)1098-111X(199806)13:6<519::AID-INT7>3.0.CO;2-O
- L.P. Maguire, B. Roche, T.M. McGinnity, and L.J. McDaid, Prediction a chaotic time series using a fuzzy neural network, Information Sciences, 112, pp.125-136, 1998 https://doi.org/10.1016/S0020-0255(98)10026-9
- C. Chiu, Prediction unemployment rates using fuzzy time series model and neural network, Proc. the IASTED International ConferenceArtificial Intelligence and Soft Computing, pp.496-499, May 27-30, 1998
- P. Yee and S. Haykin, A Dynamic Regularized Radial Basis Function Network for Nonlinear, Nonsta- tionary Time Series Prediction, IEEE Trans. on Signal Processing, vol. 47, no. 9 pp. 2503-2521, Sep., 1999 https://doi.org/10.1109/78.782193
- R. Dahlahaus, Fitting Time Series Models to Nonstationary Processes, The Annals of Statistics, vol. 25, no. 1, pp. 1-37, 1997 https://doi.org/10.1214/aos/1034276620
- J. Hori, Y. Saitoh, and T. Kiryu, Real-Time Restoration of Nonstationary Biomedical Signal under Additive Noise, IEICE Trans. INF. & SYST., vol.E82-D, no. 10, pp1409~ 1416, Oct., 1999
- R. Lesch and D. Lowe, Towards a Framework for Combining Stochastic and Deterministic Descriptions of Nonstationary Financial Time Series, Proc. 1998 IEEE Workshop Signal Processing, pp. 587-596, 1998 https://doi.org/10.1109/NNSP.1998.710690