DFT Studies for the Substituent Effect on the Diels-Alder Reaction of 1,4-Diaza-1,3-butadiene

1,4-Diaza-1,3-butadiene류의 Diels-Alder반응에 미치는 치환기 효과에 대한 DFT연구

  • Lee, Gab-Yong (Department of Chemistry, Catholic University of Taegu)
  • 이갑용 (대구가톨릭대학교 자연대학 화학과)
  • Published : 20010600

Abstract

DFT calculations have been performed on several substituted 1,4-diaza-1,3-butadienes (1,4-DABs) with electron donating and withdrawing groups at the terminal two nitrogens to investigate the reactivity of Diels-Alder reaction with acrolein. The calculated FMO (Frontier Molecular Orbital) energies for the optimized 1,4-disubstituted-1,4-DABs have been used to explain both normal and inverse electron demand Diels-Alder reactions. It is shown that the electron donating and withdrawing substituents lead to the normal(HOMO diene controlled) and inverse electron demand (LUMO diene controlled) Diels-Alder reactions, respectively.

1.4-Diaza-1,3-butadiene(1,4-DAB)과 acrolein 과의 Diels-Alder 반응의 반응성을 조사하기 위해 1,4-DAB의 말단 두 질소에 전자를 끌거나 주는 기들을 치환시킨 여러 치환 1,4-DAB들에 대해 DFT계산을 수행하였다. 최적화된 구조들에 대해 계산된 FMO(Frontier Mole cular Orbital) 에너지로서 상대적인 반응성을 설명할 수 있었다. 즉, 전자를 주는 기가 치환될 경우에는 normal electron demand 반응이 유리하며, 전자를 끄는 기가 치환될 경우에는 inverse electron demand 반응 메카니즘으로 진행됨을 알 수 있었다.

Keywords

References

  1. J. Korean Chem. Soc. v.40 Kim, C, H,;Lee, I. Y.;Lee, I. C.;Kim, K. S.;Joo, Y. H.
  2. W. Angrw.Chem. Int. Ed. Engl, Chem. Int. Ed. Engl, J. Org. Chem. Oppolzer, W.;Masamune, S.;Choy. W.;Peterson, J. S.;Sita, L. R.;Walborsky, H. M.;Barash, L.;Davis, T. C.
  3. J. Chem. Soc., Chem. Common., J. Am. Chem. Soc., J. Am. Chem. Soc Scheoller, W. W.;Schleyer, P. V. R.;Kost, D. J.;Spellmeyer, D. C.;Houk, K. K.
  4. J. Am. Chem. Soc. v.96 Dewer, M. J. S.;Griffin, A. C.;Kirschner, S.
  5. Tetrahedron v.34 Olivia, A.;Fernandes-Alonso, J. T.;Bertran, J.
  6. J. Am. Chem. Soc. v.99 Basilebsky, M. V.;Shamov, A. G.
  7. G. Theochem. v.165 Bernerdi, F.;Bottoni. A.;Olivucci, M;NcDouall, J. J. W.;Rpbb, M. A.;Tonachini
  8. Tetrahedron Lett. v.25 Brown, F. K.;Houk, K. N.
  9. J. Am. Chem. Soc. v.108 Houk, K. N.;Lin, Y. T.;Brown, F. K.
  10. J. Am. Chem. Soc. v.110 Bernardi, F.'Bottoni, A.;Field, M. J.;Guest, M. F.;Hiller, I. H.;Rovv, M. A.;Venturini, A.
  11. J. Am. Chem. Soc., K. Che,. Phys. Goldstein, E.;Beno, B.;Houk, K. N.;Stanto, R. V.;Merz, K. M.
  12. J. Mol. Struc.(Theochem), J. Chem. Soc., Perkin Trans Carpenter, J. E.;Sosa, C. P.;Jursic, B.;Zdravkovski,
  13. J. Phys. Chem. v.101 Forese, R. D. J.;Humbel, S.;Svensson, M;Morocuma, K.
  14. J.Org. Chem v.62 Forese, R. D. J.;Coxon, J. M.;West, S. C.;Morokuma, K.
  15. Frontier Orbitials and Organic Chemical Reactions, Tetrahedron, J. Am. Chem. Soc.. Chem. Rev. Fleming, I.;Eisenstein, O.;Lefour, J. M.;Ahn, T.;Hudson, R. F.;Eprotis, N. D.;Herndon, W. C.
  16. J. Chem. Soc., Perkin Trans. v.2 Bachrach, S. M.;Jiang, S.
  17. Chem. Ber. Pummerer, R.;Stieglitz, E.;Reuss, F. E.
  18. Tetrajedron v.45 Orsini, F.;Sala, G.
  19. Bull. Koream Chem. Soc. v.20 Lee, G. Y.;Kim, H. Y.;Han, I. S.
  20. Oxford Univ. Press v.61 Density-Functional Theory of Atoms and Molecules, Rev. Mod. Phys. Parr, R. G.;Yang, W.;Jomes, R. O.;Gunnarsson, O.
  21. Gaussian, Inc Gaissian 94 Frisch, M. J.;Trucks, G. W.;Schlegel, H. B.;Gill, P. M. W.;Johnson, B. G.;Robb, M. A.;Cheeseman, J. R.;Keith, T. A.;{eterson, G. A.;Montgomery, J. A.;Raghavachark, K.'Al-Laham, M. A.;Zakrzewski, V. G.;Ortiz, J. W.;Foresman, J. B.;Ciosliwski, J.;Stefanov, B. B.;Nanayakkara, A.;Challacombe, M.;Peng, C. Y.;Ayala, P. A.;Chen, W.;Wong, M. W.;Andres, J. L.;Replogle, E. S.;Gomperts, R.;Martin, R. L.;Fox, D. J.;Binkley, J. S.;Defrees, D.;Baker, J.;Stewart, J. P.;Head-Gordon, M.;Gonzales, C.;Pople, J. A.
  22. J. Braz. Chem. Soc v.8 Dias, L. C.
  23. Chemical Society London Interatomic distance Sutton, L. E.
  24. J. Mol. Struct. v.1 Kuchitsu, K.;Fukuyama, T.;Morino, Y.
  25. J. Org. Chem Hwang, Y. C.;Fowler, F. W.
  26. Terahedron Lett., Uyehara, T.;Suzuki, I.Yamamoto, Y.;Chiba, W.
  27. J. Org. Chem. v.65 Boruahm R. C.;Ahmed, S.;Sharma, U.;Sandhu, J. S.