Tempereture Dependent Dielectric Relaxation Study of Aniline in Dimethylsulphoxide and Dimethlformamide Using Time Domain Technique

시간분해기법을 이용한 디메틸 술폭사이드와 디메틸 포름아미드-아닐린용액에서 온도의존 유전이완에 관한 연구

  • Chaudhari, Ajay (Department of Physics, Dr.B.A.M. University) ;
  • Patil, C.S. (Department of Chemistry, Dr.B.A.M. University) ;
  • Shankarwar, A.G. (Department of Chemistry, Dr.B.A.M. University) ;
  • Arbad, B.R. (Department of Chemistry, Dr.B.A.M. University) ;
  • Mehrotra, S.C. (Department of Electronics and computer science, Dr.B.A.M. University)
  • Published : 20010600

Abstract

The dielectric relaxation study for aniline-dimethylsulphoxide (DMSO) and aniline-dim.ethylformamide(DMF) has been carried out using the Time domain reflectometry (TDR) technique, at different temperature and concentrations, in the frequency range of 10 MHz to 10 GHz. The dielectric parameters viz. static permittivity, relaxation time, the Kirkwood correlation factor, excess permittivity, excess inverse relaxation time and thermodynamic parameters have been obtained. The calibration method based on least squares fit method has been used. The dielectric parameters show systematic change with temperature and concentrations.

aniline-dimethylsulphoxide(DMSO)와 aniline-dimethylformamide(DMF) 계에서 dielectric relaxation 에 관한 연구를 10MHz-10GHz 진동수 영역에서 여러 가지 다른 온도 그리고 농도에서 Time Domain Reflectometry(TDR) 방법을 이용하여 수행하였다. dielectric parameter를 정적유전율, 이완시간, Kirkwood 상관계수, 잉여유전율, 잉여 역이완시간, 그리고 열역학 parameter들의 함수로 얻었다. 검정방법으로 최소자승법을 이용하였다. dielectric parameter 들이 온도와 농도에 대해 체계적으로 변하는 것을 볼 수 있었다.

Keywords

References

  1. Chem.Phys. Let v.62 Barthel, J;Bachhuber, K;Buchner, R.;gill, J. B.;Klebauer, M.
  2. J. Phys. Chem. v.68 Bass, S. J.;Nathan, W. I.;Meighan, R. M.;Cole, R. H.
  3. J. Chem. Engn. Data v.44 Khirade, P. W.;Chaudhari, A.;Shinde, J. B.;Helambe, S. N.;Mehrotra, S. C.
  4. J. Chem. Engn. Data v.28 no.8 Khirade, P. W.;Chaudhari, A.;Shinde, J. B.;Helambe, S. N.;Mehrotra, S. C.
  5. Ind. J. Pure & Appl. Phys Suryavanshi, B. M.;Mehrotra, S. C.
  6. Ind. J. Phys v.68 no.3 Garbau, K.;Swain, B. B.
  7. J. Chem Engn. Data v.44 Patil, S. P.;Chaudhari. A. S.;Lokgande, M. P.;Shankarwar, A. G.;Helambe, S. N.;Arbad, B. R.;Mehrotra, S. C.
  8. J. Chem Phys. v.101 Fetepur, P. H.;Hosamani, M. T.;Deshpande, D. K.;Mehrotra, S. C.
  9. J. Appl Phys. v.66 Cole, R. H.;Berberian, J. G.;Mashimo, S.;Chryssikos, G.;Bums, A.;Tombari, E.
  10. J. Microwave Power Electromag, Theory v.26 Paranik, S. M.;Kumgharkhane, A. C.;Mehrotra, S. C.
  11. Proc. IRE v.37 no.10 Shanon, C. E.
  12. Proc. IRE v.39 Samulon, H. A.
  13. J. Polymer Sci. Polymer Symp. Havriliak, S.;Negami, S.
  14. J. Chem. Phys. v.9 Cole, K. S.;Colege, R. H.
  15. J. Chem. Phys. v.18 Davidson, D. W.;Cole, R. H.
  16. McGraw Hill Data Reduction and Error Analysis for the Physical Sciences Bevington, P. R.
  17. Chaman and Hall Aqueous Dielectrics Hasted, J. B.
  18. Oxford university Press Theory of Dielectrics Frolhich, H.
  19. J. Mol. Liquids v.51 Kumbharkhane, A. C.;Puranik, S. M.;Mehrotra, S. C.
  20. J. Solution Chen\m. v.22 Kumbharkhane, A. C.;Puranik, S. M.;Mehrotra, S. C.
  21. J. Chem. Eng. Data v.36 Moumoualas, G.;Panopoulos, D. K.;Ritzoulis, G.
  22. Mc Graw Hill The theory of rate processes Glasstone, S.;Laide, K. J.;Eyring, H.