DOI QR코드

DOI QR Code

Cross-Interaction Constant and Intrinsic Reaction Barrier


Abstract

The cross second-derivative of the activation energy,${\theta}$G${\neq}$ , with respect to the two component thermodynamic barriers, ${\theta}$G˚X and ${\theta}$G$^{\circ}C$Y, can be given in terms of a cross-interaction constant (CIC), $\betaXY(\rhoXY)$, and also in terms of the intrinsic barrier,${\theta}$G${\neq}$ , with a simple relationship between the two: $\betaXY$ = $-1}(6${\theta}$G${\neq}$).$ This equation shows that the distance between the two reactants in the adduct (TS, intermediate, or product) is inversely related to the intrinsic barrier. An important corollary is that the Ritchie N+ equation holds (for which $\betaXY$ = 0) for the reactions with high intrinsic barrier. Various experimental and theoretical examples are presented to show the validity of the relationship, and the mechanistic implications are discussed.

Keywords

References

  1. J. Am. Chem. Soc. v.81 Miller, S. I.
  2. J. Am. Chem. Soc. v.84 Cordes, E. H.; Jencks, W. P.
  3. J. Am. Chem. Soc. v.106 Dubois, J.-E.; Ruasse, M.-F.; Argile, A.
  4. J. Am. Chem. Soc. v.99 Jencks, D. A.; Jencks, W. P.
  5. Chem. Rev. v.85 Jencks, W. P.
  6. Chem. Soc. Rev. v.19 Lee, I.
  7. Adv. Phys. Org. Chem. v.27 Lee, I.
  8. Chem. Soc. Rev. v.24 Lee, I.
  9. Coll. Czech. Chem. Commun. v.64 Lee, I.; Lee, H. W.
  10. Physical Organic Chemistry, 2nd ed. Isaacs, N. S.
  11. Concerted Organic and Bioorganic Mechanisms Williams, A.
  12. J. Am. Chem. Soc. v.101 Young, P. R.; Jencks, W. P.
  13. Can. J. Chem. v.64 Ritchie, C. D.
  14. Organic and Bio-organic Mechanisms v.Appendix A3 The signs of r in this Table should be reversed to negative for pKa vs s plots Page, M. I.; Williams, A.
  15. Acc. Chem. Res. v.5 Ritchie, C. D.
  16. submitted. Lee, I.; Lee, H. W.
  17. Ann. Rev. Phys. Chem. v.15 Marcus, R. A.
  18. Adv. Phys. Org. Chem. v.16 Albery, W. J.; Kreevoy, M. M.
  19. Theoretical Aspects of Physical Organic Chemistry. The SN2 Mechanism Shaik, S. S.; Schlegel, H. B.; Wolfe, S.
  20. Structural Effects on Equilibria in Organic Chemistry Hine, J.
  21. Can. J. Chem. v.63 McMahon, T. B.; Kebarle, P.
  22. J. Am. Chem. Soc. v.110 Brauman, J. I.; Han, C.-C.
  23. J. Am. Chem. Soc. v.110 McMahon, T. B.; Nicole, G.; Horey, J. K.; Kebarle, P.
  24. J. Chem. Soc. Perkin Trans. v.2 Uggerud, E.
  25. Rates and Equilibria of Organic Reactions Leffler, J. E.; Grunwald, E.
  26. Acc. Chem. Res. v.8 Kresge, A. J.
  27. Chem. Rev. v.85 Jencks, W. P.
  28. J. Am. Chem. Soc. v.99 Hupe, D. J.; Jencks, W. P.
  29. J. Am. Chem. Soc. v.107 Arnett, E. M.; Chawla, B.; Molter, K. E.; Amarnath, K.; Healy, K. E.
  30. J. Am. Chem. Soc. v.106 Troughton, E. B.; Molter, K. E.; Arnett, E. M.
  31. Ref. v.10
  32. J. Org. Chem. v.59 Richard, J. P.
  33. J. Am. Chem. Soc. v.122 Richard, J. P.; Toteva, M. M.; Crugeiras, J.
  34. Tetrahedron v.51 Richard, J. P.
  35. J. Am. Chem. Soc. v.105 Pellerite, M. J.; Brauman, J. I.
  36. J. Am. Chem. Soc. v.106 Lewis, E. S.; Hu, D. D.
  37. J. Am. Chem. Soc. v.109 Lewis, E. S.; Yousaf, T. I.; Douglas, T. A.
  38. J. Am. Chem. Soc. v.109 Yousaf, T. I.; Lewis, E. S.
  39. Can. J. Chem. v.63 Mitchell, D. J.; Schlegel, H. B.; Shaik, S. S.; Wolfe, S.
  40. Ref. v.9
  41. J. Am. Chem. Soc. v.114 Houk, K. N.; Gustabson, S. M.; Black, K. A.
  42. J. Comput. Chem. v.16 Lee, I.; Kim, C. K.; Lee, B. S.
  43. J. Phys. Chem. A v.101 Lee, J. K.; Kim, C. K.; Lee, I.
  44. J. Org. Chem. v.59 Lee, I.; Kim, C. K.; Chung, D. S.; Lee, B. S.
  45. J. Phys. Org. Chem. v.9 Oh, H. K.; Kwon, Y. B.; Chung, D. S.; Lee, I.
  46. J. Phys. Chem. A v.104 Kim, C. K.; Li, H. G.; Lee, H. W.; Sohn, C. K.; Chun, Y. I.; Lee, I.
  47. New J. Chem. In press. Sohn, C. K.; Min, Y. H.; Kim, C. K.; Lee, H. W.; Lee, I.
  48. J. Am. Chem. Soc. v.112 Vetter, R.; Zulicke, L.
  49. J. Am. Chem. Soc. v.106 Raghavachari, K.; Chandrasekhar, J.; Burnier, R. C.
  50. J. Org. Chem. v.58 Amyes, T. L.; Stevens, I. W.; Richard, J. P.
  51. The PMO Theory of Organic Chemistry Dewar, M. J. S.; Dougherty, R. C.
  52. J. Chem. Soc. B More O'Ferrall, R. A.
  53. J. Am. Chem. Soc. v.98 Pross, A.
  54. Reactivity in Organic Chemistry Klumpp, G. W.
  55. Acc. Chem. Res. v.18 Pross, A.
  56. Nucleophilicity Hoz, S. In(Harris, J. M., McManus, S. P. Eds.)
  57. J. Org. Chem. v.48 Hoz, S.; Speizman, D.
  58. Adv. Phys. Org. Chem. v.18 Eberson, L.
  59. Theoretical and Physical Principles of Organic Reactivity Pross, A.
  60. J. Am. Chem. Soc. v.122 Costentin, C.; Saveant, J.-M.
  61. Adv. Phys. Org. Chem. v.26 Saveant, J.-M.
  62. J. Am. Chem. Soc. v.114 McClelland, R. A.; Kanagasabapathy, V. M.; Banait, N. S.; Steenken, S.

Cited by

  1. Structure−Reactivity Relationships in the Pyridinolysis ofN-Methyl-N-arylcarbamoyl Chlorides in Dimethyl Sulfoxide vol.66, pp.25, 2001, https://doi.org/10.1021/jo0108212
  2. Significant Substituent Effects on Pyridinolysis of Aryl Ethyl Chlorophosphates in Acetonitrile vol.35, pp.5, 2001, https://doi.org/10.5012/bkcs.2014.35.5.1460
  3. Dual Substituent Effects on Pyridinolysis of Bis(aryl) Chlorothiophosphates in Acetonitrile vol.35, pp.6, 2001, https://doi.org/10.5012/bkcs.2014.35.6.1754
  4. Pyridinolysis of Aryl N,N-Dimethyl Phosphoroamidochloridates vol.35, pp.7, 2001, https://doi.org/10.5012/bkcs.2014.35.7.2213
  5. Kinetics and Mechanism of Anilinolyses of Aryl Methyl and Aryl Propyl Chlorothiophosphates in Acetonitrile vol.35, pp.9, 2001, https://doi.org/10.5012/bkcs.2014.35.9.2797