• Title/Summary/Keyword: Marcus equation

Search Result 7, Processing Time 0.021 seconds

Integrated Thermochemical Approach to Collision-Induced Dissociation Process of Peptides

  • Shin, Seung Koo;Yoon, Hye-Joo
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.131-136
    • /
    • 2021
  • Collision-induced dissociation of peptides involves a series of proton-transfer reactions in the activated peptide. To describe the kinetics of energy-variable dissociation, we considered the heat capacity of the peptide and the Marcus-theory-type proton-transfer rate. The peptide ion was activated to the high internal energy states by collision with a target gas in the collision cell. The mobile proton in the activated peptide then migrated from the most stable site to the amide oxygen and subsequently to the amide nitrogen (N-protonated) of the peptide bond to be broken. The N-protonated intermediate proceeded to the product-like complex that dissociated to products. Previous studies have suggested that the proton-transfer equilibria in the activated peptide affect the dissociation kinetics. To take the extent of collisional activation into account, we assumed a soft-sphere collision model, where the relative collision energy was fully available to the internal excitation of a collision complex. In addition, we employed a Marcus-theory-type rate equation to account for the proton-transfer equilibria. Herein, we present results from the integrated thermochemical approach using a tryptic peptide of ubiquitin.

Cross-Interaction Constant and Intrinsic Reaction Barrier

  • Lee, Ik Chun;Lee, Hae Hwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.732-738
    • /
    • 2001
  • The cross second-derivative of the activation energy,${\theta}$G${\neq}$ , with respect to the two component thermodynamic barriers, ${\theta}$G˚X and ${\theta}$G$^{\circ}C$Y, can be given in terms of a cross-interaction constant (CIC), $\betaXY(\rhoXY)$, and also in terms of the intrinsic barrier,${\theta}$G${\neq}$ , with a simple relationship between the two: $\betaXY$ = $-1}(6${\theta}$G${\neq}$).$ This equation shows that the distance between the two reactants in the adduct (TS, intermediate, or product) is inversely related to the intrinsic barrier. An important corollary is that the Ritchie N+ equation holds (for which $\betaXY$ = 0) for the reactions with high intrinsic barrier. Various experimental and theoretical examples are presented to show the validity of the relationship, and the mechanistic implications are discussed.

STUDY OF CONTACT ION PAIR DYNAMICS IN VIEW OF THE MOLECULAR SHAPES

  • Han, Chul-Hee
    • Journal of Photoscience
    • /
    • v.3 no.3
    • /
    • pp.147-151
    • /
    • 1996
  • Dynamics of contact ion-pair between 1, 2, 4, 5-tetracyanobenzene anion and cation of biphenyl derivatives was investigated on the picosecond time scale. Solvent effect on the electron transfer was observed and electron transfer rates were examined using Marcus equation which contains distance dependence of the electron transfer rate in the frequency factor, along with the consideration of molecular shape. From the discussion based on disk model for molecular shape, contribution of interring torsional motion of biphenyl to the inner-sphere reorganization energy is strongly suggested, which leads to the physical explanation for the observed solvent effect on the rate of electron transfer.

  • PDF

Solvent Effect on the Reactions of DANSYL and BANSYL Chlorides with Substituted Pyridines

  • 성대동;강동효;장정아;박성배;류준하
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.561-564
    • /
    • 1998
  • Solvent effects on the reactions of DANSYL and BANSYL chlorides with substituted pyridines have been investigated using two parameters of Taft's solvatochromic correlation and four parameters of Kirkwood-Onsager, Parker, Marcus, Hildebrand equation. The acetonitrile molecules accelerate charge separation of the reactants and stabilize the transition state. The coefficient of the solvent parameters provide a good information to predict and to analyze the reaction mechanism. The nucleophilic substitution reaction of DANSYL and BANSYL chlorides with substituted pyridines are ruled by the contribution of the change in dipole moment term and polarity-polarizability term.

MNDO Studies on the Gas-Phase S$_N$2 Reaction$^*$

  • Lee Ikchoon;Lee Bon-Su;Song Chang Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.191-196
    • /
    • 1985
  • The MNDO was found to be the most reliable semi-empirical SCF-MO method for the studies of $S_N2$ reactions involving anion and neutral molecule. The results of our MNDO calculations on the $S_N2$ reactions of $CH_3X$ + $Y^-$$CH_3Y$ + X- where X = H, F, Cl, CN, $CH_3$, and Y = F, $CH_3$ showed that the order of the leaving group ability is the reverse of the order of proton affinities. It was also found that there is no symbiosis involved in the SN2 transition state and the departure of the leaving group is relatively late in contrast to the early bond formation of the nucleophile. The Marcus equation was found to apply to the MNDO barriers and energy changes.

Envelope-Function Equation and Motion of Wave Packet in a Semiconductor Superlattice Structure

  • Kim, Byoung-Whi;Jun, Young-Il;Jung, Hee-Bum
    • ETRI Journal
    • /
    • v.21 no.1
    • /
    • pp.1-27
    • /
    • 1999
  • We present a new description of envelope-function equation of the superlattice (SL). The SL wave function and corresponding effective-mass equation are formulated in terms of a linear combination of Bloch states of the constituent material with smaller band gap. In this envelope-function formalism, we review the fundamental concept on the motion of a wave packet in the SL structure subjected to steady and uniform electric fields F. The review confirms that the average of SL crystal momentums K = ($k_x,k_y,q$), where ($K_x,k_y$) are bulk inplane wave vectors and q SL wave vector, included in a wave packet satisfies the equation of motion = $_0+Ft/h$; and that the velocity and acceleration theorems provide the same type of group velocity and definition of the effective mass tensor, respectively, as in the Bulk. Finally, Schlosser and Marcus's method for the band theory of metals has been by Altarelli to include the interface-matching condition in the variational calculation for the SL structure in the multi-band envelope-function approximation. We re-examine this procedure more thoroughly and present variational equations in both general and reduced forms for SLs, which agrees in form with the proposed envelope-function formalism. As an illustration of the application of the present work and also for a brief investigation of effects of band-parameter difference on the subband energy structure, we calculate by the proposed variational method energies of non-strained $GaAs/Al_{0.32}Ga_{0.68}As$ and strained $In_{0.63}Ga_{0.37}As/In_{0.73}Ga_{0.27}As_{0.58}P_{0.42}SLs$ with well/barrier widths of $60{\AA}/500{\AA}$ and 30${\AA}/30{\AA}$, respectively.

  • PDF

Theoretical Studies on the Hydrogen Atom Transfer Reaction (Ⅱ)$^*$

  • Lee, Ik-Choon;Song, Chang-Hyun;Lee, Byung-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.362-366
    • /
    • 1985
  • The hydrogen atom transfer reaction between substituted methane, $CH_3X,$ and its radical, $CH_2X(X=H,F,CH_3,CN,OH\;and\;NH_2$ was studied by MINDO/3 method. The transition state(TS) structure and energy barriers were determined and variation of the transition state and of the reactivity due to the change of X were analyzed based on the potential energy surface characteristics. It was found that the greater the radical stabilization energy. the looser the TS becomes; the TS occurs at about 15% stretch of the C-H bond, which becomes longer as the radical stabilization energy of $CH_2X$ increasers. The intrinsic barrier, ${\Delta}E*_{x.x},$ of the reaction with X was found to increase in the order $H The degree of bond stretch of the C-H bond stretch of the C-H bond at the TS also had the same order indicating that the homolytic bond cleavage of the C-H bond is rate-determining. Orbital interactions at the TS between LUMO of the fragment $C{\ldots}H{\ldots}C$ and the symmetry adapted pair of nonbonding, $n{\pm}(=n_1{\pm}n_2),$ or pi orbitals of the two X atoms were shown to be the dominant contribution in determining tightness or looseness of the TS. The Marcus equation was shown to apply to the MINDO/3 barriers and energy changes of the reaction.