Effect of Intercalant on the Synthesis and Properties of Epoxy Nanocomposites

에폭시 나노복합재료 제조 및 물성에 미치는 유기화제의 영향

  • 강재현 (영남대학교 응용화학공학부) ;
  • 유성구 (영남대학교 응용화학공학부) ;
  • 최현국 (상주대학교 화학공학과) ;
  • 서길수 (영남대학교 응용화학공학부)
  • Published : 2001.05.01

Abstract

In this study, the effect of type of intercalant on properties of epoxy nanocomposites was investigated. Cetyltrimethylammoniumbromide (CTMA) as an alkylammonium salt and cetyltributylphosphoniumbromgide (CTBP) as an alkylphosphonium salt were used to modify sodium montmorillonite. In the case of using the CTMA as an intercalant, the long spacing of the silicate layer was about $18.8 {\AA}$. When CTBP was used, the long spacing of the silicate layer ( $23.8{\AA}$) was higher than that of CTMA. From these results, the characteristic length of the modified silicate was found to be significantly affected by the type of intercalant. We also noted that the thermal stability of modified MMT were affected by the type of intercalant, but in the epoxy nanocomposites prepared from the modified MMT, the thermal stability remains almost the same regardless of the type of intercalant. Tensile strength and elongation of epoxy nanocomposites prepared from MMT modified with CTBT were found to be higher than those of the epoxy nanocomposite prepare with WT modified with CTMA.

유기화제의 종류에 따른 에폭시 나노복합재료에 미치는 영향을 연구하기 위하여, 알킬암모늄 염으로서 세틸트리메틸암모늄 브로마이드 (CTMA)와 알킬포스포늄 염으로서 세틸트리부틸포스포늄 브로마이드(CTBP)를 각각 Na-몬모릴로나이트에 삽입시켰다. 유기화제로서 CTMA로 치환된 MMT의 층간거리는 약 $18.8{\AA}$이였으며, CTBP로 치환되었을 경우 MMT의 층간거리 ($23.8 {\AA}$)는 CTMA로 치환되었을 경우 보다 증가하였다. 이것으로부터 MMT의 층간거리는 유기화제의 종류에 많은 영향이 있음을 알 수 있었다. 그리고 치환된 MMT의 열안정성은 유기화제의 종류에 영향이 있었으나, 이것으로부터 제조된 에폭시 나노복합재료의 경우는 아무런 영향이 없었다. 그리고 CTBP로 치환된 MMT로 제조된 에폭시 나노복합재료의 경우가 재료의 인장강도와 신장율이 CTMA로 치환된 MMT로부터 제조된 나노복합재료보다 증가하였다.

Keywords

References

  1. Polymer(Korea) v.23 H. K. Choi;Y. H. Park;S. G. Lyu;B. S. Kim;G. S. Sur
  2. J. Korean Ind. Eng. Chem. v.11 S. G. Lyu;K. S. Bae;G. S. Sur
  3. Macromolecules v.30 M. Kawasumi;N. Hasegawa;M. Kato;A. Usuki;A. Okada
  4. J. Korea Ind. Eng. Chem. v.10 G. S. Sur;J. G. Ryu;S. G. Lyu;H. K. Choi;B. S. Kim
  5. Polymer(Korea) v.22 J. G. Ryu;G. R. Park;S. G. Lyu;J. H. Rhew;G. S. Sur
  6. Macromolecules v.32 L. J. Mathias;R. D. Davis;W. L. Jarrett
  7. Polymer v.39 M. Biswas;S. Ray
  8. J. Korean Ind. Eng. Chem. v.10 H. K. Choi;J. G. Ryu;S. G. Lyu;B. S. Kim;G. S. Sur
  9. J. Appl. Polym. Sci. v.71 Y. Ke;C. Long;Z. Qi
  10. Polymer(Korea) v.24 C. U. Lee;K. S. Bae;H. K. Choi;J. H. Lee;G. S. Sur
  11. Macromolecules v.30 F. R. Colomer
  12. Chem. Mater. v.10 Z. Wang;T. J. Pinnavaia
  13. J. Polym. Sci. Part B : Polym. Physics v.34 M. Sikka;L. N. Cerini;S. S. Ghosh;K. I. Winey
  14. Chem. Mater. v.6 R. A. Vaia;R. K. Teukolsky;E. P. Giannelis
  15. Chem. Mater. v.7 T. Lan;P. D. Kaviratna;T. J. Pinnavaia
  16. M. S. Thesis A Study for Structure and Characterization of Epoxy-Clay Nanocomposite J. G. Ryu
  17. Chem. Mater. v.8 Z. Wang;T. Lan;T. J. Pinnavaia
  18. Chem. Mater. v.6 T. Lan;T. J. Pinnavaia
  19. Macromolecules v.31 A. Lee;J. D. Lichtenhan
  20. Chem. Mater. v.8 N. T. Whilton;S. L. Burkett;S. Mann