Thermal and UV Curing of Vacuum Deposited Film of Acetylene Substituted Fluorenes

아세틸렌기가 치환된 플루오렌 증착박막의 열 및 자외선 경화

  • 정상현 (한국화학연구소 화학소재 1팀) ;
  • 김정수 (충남대학교 고분자공학과) ;
  • 강영구 (한국화학연구소 화학소재 1팀) ;
  • 이창진 (한국화학연구소 화학소재 1팀)
  • Published : 2001.05.01

Abstract

Acetylene substituted fluorenes such as 2-ethynylfluorene and 2,7-diethynyl-fluorene were synthesized and thin films were prepared by the vacuum deposition. Curing of these fluorene derivatives could be achieved by heat treatment and UV irradiation. The curing temperature of 2-ethynylfluorene and 2,7-diethynylfluorene were found to be 231 and $198^{\circ}C$, respectively. The cured poly(2-ethynylfluorene) and poly(2,7-diethynylfluorene) started to decompose at 280 and $ 385^{\circ}C$, respectively. Fluorescent characteristics of the cured films were similar to those of monomers, but fluorescent efficiency of the film was decreased about 3 to 10 fold.

아세틸렌기가 치환된 fluorene 유도체 2-ethynylfluorene과 2,7-diethynylfluorene을 합성하였고 이를 진공 증착하여 박막을 제조하였다. 심중결합이 치환된 fluorene 유도체들은 자외선 및 열에 의해 경화가 가능하였다. DSC 측정 결과 2-ethynylfluorene은 $231^{\circ}C$에서 그리고 2,7-diethynylfluorene은 198$198^{\circ}C$에서 경화가 일어나는 것이 관측되었다. 경화된 poly(2-ethynylfluorene) 및 poly(2,7-diethynylfluorene)의 분해는 380 및 385$^{\circ}C$에서 일어나기 시작하였으며 T$T_g$는 관측되지 않았다. 경화된 박막의 광발광 특성은 단량체와 매우 유사하나, 발광 효율은 3에서 10배 정도 감소하였다.

Keywords

References

  1. J. Kor. Phys. Soc. v.35 J. G. Lee;S. Kim;D.-K. Choi;Y. Kim;S. C. Kim;M. H. Lee;K. Jeong
  2. Key Eng. Materials v.92/93 E. Fukuda
  3. J. Appl. Phys. v.70 Y. Takahashi;S. Ukishima;M. Iijima;E. Fukuda
  4. Macromolecules v.26 S. Iwatsuki;M. Kubo;Y. Hori
  5. Trends in Poly. Sci. v.5 A. Greiner
  6. J. Polym. Sci. v.4 W. F. Gorham
  7. J. Vac. Sci. Technol., A v.17 S. Rogojevic;J. A. Moore;W. N. Gill
  8. J. Vac. Sci. Technol., A v.11 Y. Y. Maruo;Y. Andoh;S. Sasaki
  9. Jpn. J. Appl. Phys. v.28 Y. Takahashi;S. Ukishima;M. Iijima;E. Fukuda
  10. J. Polym. Sci. v.10 E. M. Macchi
  11. J. Appl. Polym. Sci. v.25 R. M. Ikeda;R. J. Angero;F. P. Boettcher;R. N. Blomberg
  12. Macromolecules v.32 H. M. Barentsen;M. Dijk;P. Kimkes;H. Zuilhof;E. J. R. Sundholter
  13. Polymer v.39 M. Ree;T. J. Shin;S. I. Kim;S. H. Woo;D. Y. Yoon
  14. Makromol. Chem. v.185 V. Percec;B. C. Auman
  15. J. Polym. Sci. Part A: Polym. Chem. v.33 G. W. Meyer;T. E. Glass;H. J. Grubbs;J. E. McGrath
  16. J. Am. Chem. Soc. v.120 D. W. Smith, Jr.; D. A. Babb;R. V. Snelgrove;P. H. Townsend, Ⅲ;S. J. Martin
  17. J. Polym. Sci. Part A: Polym. Chem. v.34 H. J. Lee;D. S. Kim;M. C. Suh;S. C. Shim
  18. J. Am. Chem. Soc. v.81 M. D. Barnett;G. H. Daub;F. N. Hayes;D. G. Ott
  19. Macromolecules v.30 M. Ranger;D. Rondeau;M. Leclerc
  20. Synth. Commun. v.28 G. T. Crisp;Y.-L. Jiang
  21. J. Organomet. Chem. v.556 J. Lewis;P. R. Raithby;W.-Y. Wong
  22. Synthesis S. Takahashi;Y. Kuroyama;K. Sonogashira;N. Hagihara
  23. Macromol. Chem. Phys. v.195 C. Beggin;J. V. Grazulevicius;P. Strohriegl
  24. Bull. Kor. Chem. Soc. v.16 J. Y. Chang;H. J. Ji;M. J. Han
  25. Polymer v.40 H. J. Kim;Z. Brunovska;H. Ishida
  26. J. Photochem. and Photobiol. A: Chem. v.99 F. Cataldo