Reaction between Calcium-doped Lanthanum Chromite and Yttria Stabilized Zirconia

칼슘이 첨가된 란탄-아크롬산 염과 이트리아 안정화 지르코니아 계면간의 반응

  • 최진삼 (경상대학교 생산기술연구소)
  • Published : 2001.06.01

Abstract

The ceramic diffusion coupling with the green body of calcium-doped lanthanum chromite(La$_{0.8}$Ca$_{0.2}$CrO$_3$CLC- G) and sintered calcium-doped lanthanum chromite(La$_{0.8}$Ca$_{0.2}$CrO$_3$ CLC) by Pechini's method on yttria stabilized zirconia(YSZ) plate has been investigated. The X-ray diffraction pattern of CLC sides at the reacted CLC-G/ CLC and CLC/YSZ interface were identified as La$_{1-x}$ Ca$_{x}$CrO$_3$ and the unreacted YSZ side was cubic-ZrO$_2$ at the treated condition, 1300~1500 C for 10 hr in air, respectively. The order of migration components between CLC/YSZ interface was Zr>La>>Cr>>>Ca and these changes were not dependent upon the treated conditions. The grain shape and size at the interface of CLC-G/CLC was appeared to have a uniform distribution with increasing temperature. The bonding reaction of YSZ/CLC was occurred without a large amount change of the compositions in SEM photos.os.otos.os.

Pechini방법으로 제조한 La$_{0.8}$Ca$_{0.2}$CrO$_3$CLC소결체와 La$_{0.8}$Ca$_{0.2}$CrO$_3$CLC-Green체를 YSZ에 적층한 후 온도의 함수로 계면에서의 미세구조와 성분이동 등의 거동을 고찰하였다. CLC-G/CLC와 CLC/YSZ계면에서의 CLC면은 반응온도에 상관없이 XRD 관찰에서 주상은 La$_{1-x}$ Ca$_{x}$CrO$_3$그리고 CLC와 반응하지 않은 YSZ면의 결정 상은 cubic-ZrO$_2$으로 각각 나타났다. CLC/YSZ반응 계면의 성분이동은 Zr > La>>Cr>>>Ca 순이었으며, 온도에 따른 개개 성분의 이동도 차이는 크지 않았다. CLC/YSZ계면간의 결합은 계면성분간의 과다한 성분이동 없이 현 연구의 온도전체에 걸쳐 가능한 것으로 나타났다. CLC-G/CLC간의 SEM미세구조는 결합 면을 경계로 저온에서는 결정의 입자크기 차이를 보이다가 온도가 증가할수록 균일화되는 경향을 보였다.였다. 보였다.였다.

Keywords

References

  1. N. Q. Minh, 'Ceramic Fuel Cells,' J. Am. Ceram. Soc., 76(3) 563 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. A. P. Fickett, 'Fuel Cell Electrocatalysts-Where Have We Failed,' Electrochem. Soc. Spring Meeting, Philadelphia (1977)
  3. S. V. Phillips, A. K. Datta and L. Lakin, 'Bonding Technology in Fabrication of Zirconia Based Solid Oxide Fuel Cells,' ; in Proc. of the Second Int. Symp. on SOFC Luxembourg, pp737 (1991)
  4. T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya and I. Anzai, J. Ceram. Soc. Japan 100(6), 847, (1992)
  5. R. J. Sah, K. Zurell and A. Koch, 'Development of Manifolds for Planar SOFC Modules,' : in 1992 Fuel Cell Seminar, Washington, DC, pp257 (1992)
  6. N. Sakai, T. Kawada, H. Yokokawa and M. Dokiya, Science and Technology of Zironia V, Section VI : Solid Oxide Fuel Cells, pp764 (1992)
  7. J. P. R. de Villiers and A. Muan, J. Am. Ceram. Soc., 75(6), 1333 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb04191.x
  8. N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, and I. Kojima, J. Am. Ceram. Soc., 76(3), 609 (1982) https://doi.org/10.1111/j.1151-2916.1993.tb03649.x
  9. M. Kertesz, I. Riess, D. S. Tannhauser, R. Lanhpage and F. J. Rohr, J. Solid State Chem., 42, 125 (1982) https://doi.org/10.1016/0022-4596(82)90258-4
  10. T. Horita, N. Sakai, T. Kawada, H. Yokokawa, and M. Dokiya, Denki Kagaku, 61, 760 (1993)
  11. T. Horita, Jin-Sam Choi, You-Kee Lee, N. Sakai, T. Kawada, H. Yokokawa, and M. Dokiya, J. Am. Ceram. Soc., 78, 1729 (1995) https://doi.org/10.1111/j.1151-2916.1995.tb08882.x
  12. J. D. Carter, C. C. Appel and M. Mogensen, J. Solid State Chem., 122 407 (1996) https://doi.org/10.1006/jssc.1996.0134
  13. M. P. Pechini, U. S. Patent No. 3, 330, 697
  14. J. Kondon, S. Kikuchi, Y. Tomii, and Y. Ito, J. Electrochem. Soc., 145, 5, 1550 (1998) https://doi.org/10.1149/1.1838517