PLD법에 의해 제조된 ZnO박막의 두께 변화에 따른 특성 연구

Thickness dependence of ZnO thin films grown on sapphire by PLD

  • Yun, Uk-Hui (Dept. of Metallurgical Engineering, Yonsei University) ;
  • Myeong, Jae-Min (Dept. of Metallurgical Engineering, Yonsei University) ;
  • Lee, Dong-Hui (Dept. of Metallurgical Engineering, Yonsei University) ;
  • Bae, Sang-Hyeok (Dept.of Electronics Engineering, Yonsei University) ;
  • Yun, Il-Gu (Dept.of Electronics Engineering, Yonsei University) ;
  • Lee, Sang-Ryeol (Dept.of Electronics Engineering, Yonsei University)
  • 발행 : 2001.04.01

초록

펄스레이저 증착법 (PLD)으로 (0001)면 사파이어 기판 위에 성장시킨 ZnO 박막의 두게 변화가 표면형상, 결정성 및 전기/광학적 특성에 미치는 효과에 대하여 조사하였다. SEM 및 XRD 분석을 통해 약 4000 의 두께에서 3차원 island들이 생성되며, 박막의 두께가 증가함에 따라 결정립의 크기가 증가하고, 결정성이 향상되었음을 알 수 있었다 상온에서의 PL 측정을 통해 두께가 증가함에 따라 ultraviolet(UV) 및 deep level emission peak의 강도가 급격히 증가함을 알 수 있었다. Hall측정 결과, 모든 박막들이 H형 전도도를 보였고, 운반자농도가 $10^{19}$ $cm^{-3}$ 이상이었으며, 두께가 증가할수록 운반자농도가 감소하여 약 4000 에서 포화되는 경향을 보였다. 따라서, 사파이어 기판 위에 증착시킨 ZnO 박막은 약 4000 의 두께에서 bulk ZnO의 특성을 나타내었다.

In order to investigate the effect of thickness on the properties of ZnO thin films, a series of films having different thickness were deposited on (0001) sapphire by using pulsed laser deposition(PLD). SEM and XRD analyses showed that, as the film thickness increases, the grain size increased and the crystallinity improved. Room-temperature PL spectra also exhibited that the intensities of both ultraviolet and deep level emission Peaks increased as the film thickness increased. Hall measurements at room- temperature revealed that, as the film thickness changes from 400 to 4000 , the carrier concentration of the film showed sharp decrease, which that of thicker film gradually saturated. Therefore, it is concluded that the strain due to the lattice mismatch between substrate and film is fully relaxed around the thickness of 4000 .

키워드

참고문헌

  1. V. Srikant, D. R. Clarke, J. Appl. Phys. 83, 5447 (1998) https://doi.org/10.1063/1.367375
  2. D. C. Reynolds, D. C. Look, B. Jogai, H. Morkoc, Solid State Commun. 101, 643 (1997) https://doi.org/10.1016/S0038-1098(96)00697-7
  3. T. L. Yang, D. H. Zhang, J. Ma, H. L. Ma, Y, Chen, Thin Solid Films 326, 60 (1998)
  4. J. F. Cordaro, Y. Shim, J. E. May, J. Appl. Phys. 60,4186 (1986) https://doi.org/10.1063/1.337504
  5. B. Sang, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 37, L206 (1998) https://doi.org/10.1143/JJAP.37.L206
  6. P. Verardi, N. Nastase, C. Gherasim, C. Ghica, M. Dinescu, R. Dinu, C. Flueraru, J. Cryst. Growth 197,523 (1999) https://doi.org/10.1016/S0022-0248(98)00808-2
  7. Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, et al., Phys. Stats Sol. (b), 202, 669 (1997) https://doi.org/10.1002/1521-3951(199708)202:2<669::AID-PSSB669>3.0.CO;2-T
  8. M. Kawasaki, A. Ohtomo, I. Ohkubo, etc., Mat. Sci. & Eng. B, 56, 239 (1998)
  9. N. Fujimura, T. Nishihara, S. Goto, J, Xu, T, Ito, J, Cryst. Growth 130, 269 (1993)
  10. H. K. Kim, M. Mathur, Appl. Phys. Lett., 61, 2524 (1992) https://doi.org/10.1063/1.108169
  11. P. Zu, Z. K. Tang, G. K. L. Wong, et al., Solid State Commun. 103, 459 (1997) https://doi.org/10.1016/S0038-1098(97)00216-0
  12. R. D. Vispute, V. Talyansky, R. P. Sharma, et al., Surf. Sci. 127, 431 (1998) https://doi.org/10.1016/S0169-4332(97)00668-5
  13. B. J. Jin, S. Im, S. Y. Lee, Thin Solid Films, 366, 107 (2000) https://doi.org/10.1016/S0040-6090(00)00746-X
  14. S. H. Bae, S. Y. Lee, B. J. Jin, S. Im, Surf. Sci. 154-155,458 (2000) https://doi.org/10.1016/S0169-4332(99)00398-0
  15. G. Santana, A. Morales-Acevedo, O. Vigil, L. Vafflant, et al., Thin Solid Films 373, 235 (2000) https://doi.org/10.1016/S0040-6090(00)01142-1
  16. Y. S. Choi, C. G. Lee, S. M. Cho, Thin Solid Films 289,153(1996) https://doi.org/10.1016/S0040-6090(96)08923-7
  17. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, et al., Appl. Phys. Lett., 72, 2466 (1998) https://doi.org/10.1063/1.121384
  18. Y. S. Jeong, S. Y. Lee, H. K. Jang, I. S. Yang, S. H. Moon, B. D. Oh, Appl. Surf. Sci. 109, 424 (1997) https://doi.org/10.1016/S0169-4332(96)00778-7
  19. K. Kawa, S. Hayakawa, Handbook of sputter deposition technology, Noyes Publication, Park Ridge, New Jersey, p135
  20. B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, pl02
  21. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Cryst. Growth 184-185, 605 (1998)
  22. Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, H. W. White, J. Appl. Phys. 88,201 (2000) https://doi.org/10.1063/1.373643