Mechanical and Electrical Properties of Heavily Drawn Cu- Nb Nanocomposites with Various Nb contents

Nb함량에 따른 Cu-Nb나노복합재료의 기계적.전기적 특성

  • Kim, Jong-Min (Dept. of Metallurgical Eng., Chungnam National University) ;
  • Jeong, Jin-Hui (Dept. of Metallurgical Eng., Chungnam National University) ;
  • Hong, Sun-Ik (Dept. of Metallurgical Eng., Chungnam National University)
  • Published : 2001.04.01

Abstract

The mechanical and electrical properties of Cu-Nb filamentary nanocomposite fabricated by the bundling and drawing process were examined. The strength increased gradually with increasing Nb content while the ductility was insensitive to Nb content. The ratio of yield stresses at 293K and 75K are found to be 치ose to that of Young's moduli in various Cu-Nb nanocomposites, suggesting that athermal obstacles primarily control the strength. The fracture morphologies show ductile fractures irrespective of Nb contents. Secondary cracking along the interfaces between subelemental wires was occasionally observed and the frequency of secondary cracking increased with increasing Nb content. The conductivity and the resistivity ratio decreased with increasing Nb content. The decrease of the conductivity and the resistivity ratio(${\rho}_{293k}$/$\{rho}_{75k}$) can be explained by the increasing contribution of interface scattering.

다발체 형성과 인발 공정으로 제조된 Cu-Nb 필라멘트 미세복합재료의 기계적 전기적 특성에 대하여 연구하였다. Nb의 함량이 증가함에 따라 강도는 점차 증가하였으나 연성은 Nb의 함량에 무관하였다. 293K와 75K에서의 항복강도의 비율은 Cu-Nb 미세복합재료의 Young의 계수 비율과 비슷하게 관찰되었다. 이러한 사실은 주로 장범위 방해물(athermal obstacles)들이 Cu-Nb 마세복합재료의 강도에 영향을 미친다는 것을 의미한다. 파면 조직관찰 결과는 Cu-Nb 미세복합재료는 Nb의 함량에 판관계없이 연성파괴의 특성을 나타내었으며, 부전선재 (subelematal wires)사이의 계면을 따라 발생하는 2차크랙 (secondary crack) 의 양은 Nb 함량이 증가함에 따라 증가하였다. 전기 전도도와 비저항비 (${\rho}_{293k}/{rho}_{75k}$)는 Nb 함량이 증가할수록 감소하였다. 이와 같은 Nb함량에 따른 전기전도도와 비저항비의 감소는 계면산란의 기여도가 증가하였기 때문이다.

Keywords

References

  1. J. D. Verhoeven, L. S. Chumbley, F. C. Laabs and W. A. Spitzig, Acta Metall. Mater., 1991, vol 39, pp. 2825-2834 https://doi.org/10.1016/0956-7151(91)90100-F
  2. P.D. Funkenbusch and T. H. Courtney, Scripta Metall., 1989, vol. 23, pp. 1719-1724 https://doi.org/10.1016/0036-9748(89)90349-9
  3. T. H. Courtney, in Metal Matrix Composites: Processing and Interfaces, edited by R. K. Everett and R. J. Arsenault, Academic Press, San Diego, U. S. A., 1991, p101
  4. C. L. Trybus and W. A. Spitzig, Acta Metall., 1989, vol.37, pp. 1971-1981 https://doi.org/10.1016/0001-6160(89)90081-3
  5. W. A. Spitzig, C. L. Trybus and J. D. Verhoeven, in Metal Matrix Composites: Mechanisms and Properties, edited by R. K. Everett and R. J. Arsenault, Academic press, San Diego, U. S. A., 1991, pl51
  6. P. D. Funkenbusch and T. H. Courtney, Scripta Metall. Mater., 1990, vol. 24, pp. 1175-1180 https://doi.org/10.1016/0956-716X(90)90322-8
  7. C. Biselli and D. G. Morris, Acta Metall. Mater., 1994, vol. 42, pp. 163-176 https://doi.org/10.1016/0956-7151(94)90059-0
  8. C. Biselli and D. G. Morris, Acta metall. Mater., 1996, vol. 44 pp. 493-504
  9. U. Hangen and D. Raabe, Acta Metall. Mater., 1995, vol. 43, pp. 4075-4082 https://doi.org/10.1016/0956-7151(95)00079-B
  10. S. I. Hong and M. A. Hill, Acta Metall Mater., 1998, vol. 46, pp. 4111-4122
  11. S. I. Hong and M. A. Hill, Mater. Sci. Eng. A, 2000, vol. 281, pp. 189-197 https://doi.org/10.1016/S0921-5093(99)00728-5
  12. S. I. Hong, Scripta Mater., 1998, vol. 39, pp. 1685-1691 https://doi.org/10.1016/S1359-6462(98)00383-2
  13. W. A. Spitzig, F. C. Laabs, H. L. Downing, and C V. Renaud, Materials and Manufacturing Processes, 1992, vol. 7,1-13 https://doi.org/10.1080/10426919208947395
  14. J. Bevk, J. P. Harbison and J. L. Bell, J. Appl. Phys., 1978, vol. 49, pp. 6031-6039 https://doi.org/10.1063/1.324573
  15. W. A. spitzig, H. L. Downing, F. C. Laabs, E. D. Gibson and J. D. Verhoeven, Metll. Trans., 1993, vol. 24A, pp. 7-14
  16. W. A. spitzig, A. R. Pelton and F. C. Laabs, Acta Metall., 1987, vol. 35, pp. 2427-2442 https://doi.org/10.1016/0001-6160(87)90140-4
  17. S. I. Hong and M. A. Hill, Scripta Mater., 2000, vol. 42, pp. 737-742 https://doi.org/10.1016/S1359-6462(99)00423-6
  18. J. D. Verhoeven, H. L. Dowing, L. S. Chumbley and E. D. Gibson, J. Appl. Phys, 1989, vol. 65, pp. 1293-1301 https://doi.org/10.1063/1.343024
  19. S. I. Hong and M. A. Hill, Mater. Sci. Eng., A264 (1999) 151 https://doi.org/10.1016/S0921-5093(98)01097-1
  20. K. R. Karasek and J. Bevkm J. Appl. Phys., 52 (1981) 1370 https://doi.org/10.1063/1.329767
  21. C. L. Trybus, L. S. Chumbly, W. A. Spitzig, and J. D. Verhoeven, Ultramicroscopy, 1989, vol. 22, pp. 315-320 https://doi.org/10.1016/0304-3991(89)90060-0
  22. G. Frommeyer and G. Wassermann, Phys. Stat. Sol., A27 (1975) 99 https://doi.org/10.1002/pssa.2210270112
  23. S.I. Hong, J. Mater. Res., 15 (2000) 1889