Studies on the Sensing Mechanism of Conducting Polymer for Volatile Organic Compound Sensing

휘발성 유기화합물 측정을 위한 전도성고분자 센서의 감응기구에 관한 연구

  • Hwang, Ha-Ryong (Departments of Metallurgical Engineering, Kyungpook National University) ;
  • Baek, Ji-Heum (Departments of Metallurgical Engineering, Kyungpook National University) ;
  • Heo, Jeung-Su (Departments of Metallurgical Engineering, Kyungpook National University) ;
  • Lee, Deok-Dong (Dept.of Electronics Engineering, Kyungpook National University) ;
  • Im, Jeong-Ok ;
  • Lee, Jun-Yeong (Dept. of Textile Engineering, Sungkyunkwan University)
  • Published : 2001.07.01

Abstract

In this study, we fabricated chemically polymerized PPy and PANi films with different selectivity by controlling dedoping time. And the sensing properties and mechanism of VOCs adsorption to conducting polymers were investigated. Thin sensor had higher sensitivity compared to thick one, and dedoped sensor for 1-minute highest sensitivity. Upon gas absorption, polypyrrole exhibited positive sensitivity while polyaniline had negative sensitivity. PPy film show hydrophilic property and PANi film show hydrophobic property. After the gas absorption, the sensitivity increased as a function of polarity of absorbed molecules. These behaviors are due to the polar molecules absorbed with the movable polaron or free carrier, and then it interrupt or generate the movement of polaron and carrier, and then it changes the conductivity of polymer. We found that conducting polymer sensors are very sensitive to the difference in polarity of gas molecules.

전도성 고분자인 poupyrrole과 polyaniline을 이용하여 센서를 제조하고 휘발성 유기화합물에 대한감응특성 및 감지막의 물성을 조사하여 지금까지 알려지지 않은 감응 기구를 설명하고자 하였다. Polypyrrole과 polyaniline은 두께가 얇은 경우가 두꺼운 경우보다 감도가 높았으며, 1분간 도펀트를 제거한 센서가 가장 높은 감도를 나타내었다. 또한 두 가지 센서 모두 극성이 강한 분자가 흡착될수록 감도가 증가하였는데, 이는 극성을 갖는 분자가 감지막 내부로 침투하여 polaron 및 자유 carrier를 고착시키거나 추가의 자유 carrier를 형성하여 전도도에 변화를 주기 때문인 것으로 판단된다.

Keywords

References

  1. G. Bidan, Sens. Actuators, 86,45 (1992)
  2. J.M. Slater, E.J. Watt, Anal. Proc., 26, 397 (1989)
  3. M. Shaolin, Electrochem. Acta., 39, 9 (1994) https://doi.org/10.1016/0013-4686(94)85004-6
  4. M. Shaolin, K. Jinquing, Z. Jianbing, J. Electroanal. Chem., 334, 121 (1993) https://doi.org/10.1016/0022-0728(92)80565-L
  5. J.W. Gardner, P.N. Bartlett, Sensors and Actuators, B18-19, 211 (1994) https://doi.org/10.1016/0925-4005(94)87085-3
  6. B.J. Hwang, J.Y. Yang, C.W. Lin, J. Electrochemical Soc., 146 (3), 1231 (1999) https://doi.org/10.1149/1.1391751
  7. J.Y. Lee, D.Y. Kim, C.Y. Kim, Synth, Met., 74, 103-106(1995) https://doi.org/10.1016/0379-6779(95)03359-9
  8. D.Y. Kim, J.Y. Lee, C.Y. Kim, E.T. Kang, K.L. Tan, Synth, Met., 72, 243 (1995) https://doi.org/10.1016/0379-6779(95)03286-X
  9. M.D. Imisides, R. Jhon, G.G. Wallace, Chemtech., 26 (5), 19 (1996)
  10. J.K. Avlyanov, T. Min, A.G. MacDiarmid, A.J. Epstein, Synth, Met., 72, 65 (1995 https://doi.org/10.1016/0379-6779(94)02318-S
  11. J.W. Gardner, P.N. Bartlett, Electronic noses principles and applications, 80-81, Oxford University Press, New York, U.S., (1999)
  12. Z.T. de Olivia Jr., M.C. dos Santos, Solid State Communications, 49-53, 114 (2000) https://doi.org/10.1016/S0038-1098(99)00580-3