Humidity Sensitive Properties of Humidity Sensor Using Reactive Copolymers

반응성 공중합체들을 이용한 습도센서의 감습 특성

  • Published : 2001.02.01

Abstract

The mutually reactive copolymers poly[(vinylbenzyl chloride)-co-(n-butyl acrylate)-co-(2-hydroxyethyl methacrylate)] and poly[(4-vinylpyridine)-co-(n-butyl acrylate)-co-(2-hydroxyethyl methacrylate)] were synthesized for the humidity sensitive material by forming simultaneous quaternization. The humidity sensor showed an average resistance of 8.6 M$\Omega$, 310 k$\Omega$ and 12 k$\Omega$ at 30%RH, 60%RH and 90%RH, respectively. The hysteresis and temperature coefficient were $\pm$3%RH and -0.37~-0.40%RH/$^{\circ}C$. The introduction of n-BA and HEMA increased the resistance of the humidity sensor however it enhanced the adherence to the alumina substrate. The response time was 54 seconds changing from 33%RH to 85%RH and the difference of resistance was +0.2%RH after soaking in water for 2 hr.

4 차 암모늄염을 형성할 수 있는 공중합체들 poly[(vinylbenzyl chloride)-co-(n-butyl acrylate)-co-(2-hydroxyethyl methacrylate)]와 poly[(4-vinylpyridine)-co-(n-butyl acrylate)-co-(2-hydroxyethyl methacrylate)]를 고분자막 습도센서의 감습재료로 사용하기 위하여 합성하였다. 습도센서는 30%RH, 60%RH 그리고 90%RH에서 평균 저항 값은 각각 8.6 M $\Omega$, 310 k$\Omega$ 그리고 12 k$\Omega$을 보여 주었다. 또한 히스테리시스는 $\pm$3%RH 안에서 나타났으며, 온도의존성 계수는 -0.37~-0.407RH/$^{\circ}C$이었다. 감습막의 조성에서 공중합체 중 n-BA와 HEMA의 도입은 저항을 증가시키는 요인이 되나 기판과의 접착성은 크게 향상되었다. 33%RH에서 85%RH로 또는 역으로 변화할 때의 응답속도는 54초이며 수중에 2시간 침적 후 저항의 변화는 +0.2%RH 이내에서 존재하였다.

Keywords

References

  1. N. Kinjo, S. Ohara, T. Sugawara and S. Tsuchitani, Polym, J., 15, 621 (1983) https://doi.org/10.1295/polymj.15.621
  2. Y. Sakai. Y. Sadaoka, S. Okumura and K. IKeuchi, Kobunshi Ronbunshu, 41. 209 (1984)
  3. J.S. Jo. I-.Y. Lee. H-.M. Lee, K-.H. Kim and M.S. Gong, Polymer(Korea), 16. 266 (1992)
  4. J.S. Paek and M.S. Gong, Korean J. Mater. Res.. 5, 715 (1995)
  5. Y. Sakai. Y. Sadaoka, M. Matsuguchi, Y. Kanakura and M. Tamura. J. Electrochem. Soc., 138, 2474-2478 (1991) https://doi.org/10.1149/1.2085997
  6. Y. Sakai. Y. Sadaoka and K. Ikeuchi, Sensors and Actuators. 9, 125 (1986) https://doi.org/10.1016/0250-6874(86)80014-2
  7. M. Hijikigawa, S. Miyoshi, T. Sugihara and A. Jinda, Sensors and Actuators. 4. 307 (1983) https://doi.org/10.1016/0250-6874(83)85038-0
  8. Y. Sakai. Y. Sadaoka and M. Shimada. Sensors and Actuators 16, 359 (1989) https://doi.org/10.1016/0250-6874(89)85006-1
  9. Y. Sakai. Y. Sadaoka, M. Matswuguchi, Sensors and Actuators B 35. 85 (1996) https://doi.org/10.1016/S0925-4005(96)02019-9
  10. C.W. Lee, H.W. Rhee and M.S. Gong. Syn, Met., 106, 177 (1999) https://doi.org/10.1016/S0379-6779(99)00132-0
  11. Y. Sakai, Y. Sadaoka, M. Matsuguchi and K. Hirayama. H. Sakai. J. Electrochem. Soc., 140. 432 (1993) https://doi.org/10.1149/1.2221063
  12. Y. Sakai. Y. Sadaoka and M. Matguguchi, J. Electrochem. Soc., 136. 171 (1989) https://doi.org/10.1149/1.2096579
  13. Y. Sakai. Y. Sadaoka and H. Hukumoto, Sensors and Actuators, 13, 243 (1988) https://doi.org/10.1016/0250-6874(88)85004-2
  14. M.S. Gong. J.S. Jo. H-.M. Lee and K-.H. Kim. Proceedins of Sensor Technology, 2 (1), 367 (1991)
  15. Y. Sakai. Y. Sadaoka, M. Matsuguchi and H. Sakai, Sensors and Actuators B, 25. 689 (1995) https://doi.org/10.1016/0925-4005(95)85152-6
  16. M.S. Gong and H.G. Cho, Material Research Journal (Dankook University). 1, 9 (1989)
  17. S.S. Lee and M.S. Gong. Korean J. Mat. Res. 10, 825 (2000)
  18. Handbook of Materials and Moisture, p 151-167, Kyoritsu Publish Co. (Japan), 1991