고 에너지 (1.5 MeV) Boron 이온 주입과 초기 산소농도 조건이 깊은 준위에 미치는 영향에 관한 연구

The Effects of high Energy(1.5MeV) B+ ion Implantation and Initial Oxygen Concentration Upon Deep Level in CZ Silicon Wafer

  • Song, Yeong-Min (LG Siltron Inc., Dept. of Materials Engineering, Chungnam National University) ;
  • Mun, Yeong-Hui (LG Siltron Inc.) ;
  • Kim, Jong-O (Dept. of Materials Engineering, Chungnam National University)
  • 발행 : 2001.01.01

초록

고 에너지 (1.5 MeV) 이온 주입된 Boron의 농도와 silicon 기판의 초기 산소 농도의 변화에 따라 silicon기판에 형성된 결정 결함 및 금속 불순물의 Gettering 효율에 대하여 DLTS(Deep Level Transient Spectroscopy), SIMS(Secondary ion Mass Spectroscopy), BMD(Bulk Micro-Defect) analysis 및 TEM (Transmission Electron Microscopy)을 이용하여 연구하였다. 이온 주입 전후의 DLTS 결과를 확산로 및 RTA를 이용한 열처리 전후의 DLTS 결과와 비교할 때 이온 주입 전 시편에서 볼 수 있는 공공에 의한 깊은 준위는 열처리 온도의 증가에 따라 금속 불순물과 관련된 깊은 준위로 천이함을 알 수 있다. 또한 고온 열처리의 경우, 초기 산소 농도가 높을수록 깊은 준위의 농도가 감소함을 볼 때 초기 산소 농도가 높을 수록 gettering 효율 측면에서 유리한 것으로 사료된다

The effect of high energy B ion implantation and initial oxygen concentration upon defect formation and gettering of metallic impurities in Czochralski silicon wafer has been studied by applying DLTS( Deep Level Transient Spectroscopy), SIMS(Secondary ton Mass Spectroscopy), BMD (Bulk Micro-Defect) analysis and TEM(Transmission Electron Microscopy). DLTS results show the signal of the deep levels not only in as-implanted samples but also in low and high temperature annealed samples. Vacancy-related deep levels in as- implanted samples were changed to metallic impurities-related deep levels with increase of annealing temperature. In the case of high temperature anneal, by showing the lower deep level concentration with increase of initial oxygen concentration, high initial oxygen concentration seems to be more effective compared with the lower initial oxygen one.

키워드

참고문헌

  1. W.B. Henley, L. Jastrzebski, and N.F. Haddad, Matter. Res. Soc. symp. Proc., 262, 993 (1992)
  2. W.C. McColgin, J.P. Lavine, and C.V. Stancampiano, Mater. Res. Soc. symp. Proc., 378, 713 (1995)
  3. F. Shimura, solid state phenom., 19/20, 1 (1991)
  4. M. Tamura, N. Natsuaki, Y. Wada and E. Mitani, Nucl. Inst. And Meth. in phys. Res. B96, 210 (1995) https://doi.org/10.1016/0168-583X(94)00484-6
  5. Hideki Tsuya, Ken Ogawa and Fumio Shimura, Jap. J. Appl. Phys. Vol. 20(1), L31 (1981) https://doi.org/10.1143/JJAP.20.L31
  6. J. Lalita, B.G. Svensson, C. Jagadish, Nucl. Inst. And Meth. in phys. Res. B96, 210 (1995)
  7. H. Wong, N.W. Cheung, P.K. Chu, J. Liu and J.W. Mayer, Appl. Phys. Lett. 52, 1023 (1988) https://doi.org/10.1063/1.99233
  8. W. Skorupa, R. Kogler, K. Schmalz, P. Gaworzlewski, G. Morgenstren, and H. Syhre, Nucl. Instrum. Methods B74, 70 (1993)
  9. M.H.F. Overwijk, J. Politiea, R.C.M. de kruif, and P.C. Zalm, Nucl. Instrum. Methods B96, 257 (1995) https://doi.org/10.1016/0168-583X(94)00495-1
  10. C.J. Barbero, J.W. Corbett, C. Deng, and Z. Atzmon, J. Appl. Phys. 78, 3012 (1995) https://doi.org/10.1063/1.360050
  11. J.L. Benton, P.A. Stolk, D.J. Eaglesham, D.C. Jacobson, J.Y. Cheng, J.M. Poate, N.T. Ha, T.E. Haynes, and S.M. Myers, J. Appl. Phys. 80, 3275 (1996) https://doi.org/10.1063/1.363236
  12. H. Lemke Phys. Stat. Sol. (A) 64 , 549 (1981) https://doi.org/10.1002/pssa.2210640219
  13. Zoth siemens AG Priv. Comm.
  14. Brotherton J. Appl. Phys. 54, 5112 (1983) https://doi.org/10.1063/1.332732
  15. A. Chantre Appl. Phys. Lett. 46, 264 (1985) https://doi.org/10.1063/1.95651
  16. K. Wuenstel et. al., Appl. Phys., 28, 252 (1982)