THERRESTRIAL IMPACT CRATERING CHRONOLOGY: A PRELIMINARY ANALYSIS

  • Published : 2001.12.01

Abstract

We have recently compiled a database of the properties of 192 impact craters, which supercedes previous compilations. Using our database, the impact structures found in North America, Europe and Australia have been examined; these cratonic areas have been relatively stable for considerably long geological periods, and thus have been best preserved. It is confirmed that there is a close correlation between the geological epoch boundaries, the epochs of mass extinctions, antral the "timing" of impacts. In addition, the terrestrial cumulative flux of objects >20km is found to be $1.77{\times}10^{-15}km^{-2}yr^{-1}$, over the last 120 Myr, which is much smaller than the published values in McEwen et al. (1997) and Shoemaker (1998) ($5.6{\pm}2.8{\times}10^{-15}km^{-2}yr^{-1}$. For terrestrial impact structures with D> 50 km, the apparent cumulative flux over the last 2450 Myr is ~50 times smaller than the corresponding value for the Moon. If we assume that the Earth and the Moon suffered the same level of bombardment over this time, this would mean that the actual flux of impacting bodies, capable of making craters with D)50 km, was ~ 50 times larger than the apparent flux estimated from the currently known terrestrial records.

Keywords

References

  1. Nature v.257 no.1102 Claeys, P.;Casier, J.-G.;Margolis, S. V.
  2. M&PS v.34 no.393 Dypvik, H.;Attrep, M.,Jr.
  3. Terrestrial Impact Structures Fortes, A. D.
  4. Ceme. Conf. Glikson, A. Y.;Mernagh, T. P.;Mory, A. J.;Iasky, R. P.;Pirajno, F.
  5. Nature v.340 no.17 Gostin, V. A.;Keays, R. R.;Wallace, M. W.
  6. Geochronology, Time Scales, and Global Stratigraphic Correlation Gradstein, F. M.;Agterberg, F.P.;Ogg, J.G.;Hardenbol, J.;van Veen, P.;Thierry, J.;Huang, Z.;Bergren, W.A.(ed.);Kent, D. V.(ed.);Aubry, M. P.(ed.);Hardenbol, J.(ed.)
  7. Meteoritics v.26 no.175 Grieve, R. A. F.
  8. Hazards due to Comets and Asteroids v.417 Grieve, R. A. F.;Shoemaker, E. M.
  9. Icarus v.149 no.37 Hartmann, W. K.;Anguita, J.;de la Casa, M.A.;Berman, D. C.;Ryan, E. V.
  10. A Geologic Time Scale Herland, W. B.;Armstrong, R.;Cox, A.;Lorraine, C.;Smith, A.;Smith, D.
  11. J.R.A.S. Canada v.87 no.77 Hildebrand, A. R.
  12. Geology v.19 no.867 Hildebrand, A. R.;Penrield, G. T.;Kring, D. A.;Pilkington, M.;Camargo, Z. A.;Jacobsen, S. B.;Boynton, W. V.
  13. Meteorite Craters and Impact Structures of the Earth Hodge, P.
  14. Global Catastrophes in Earth History v.223 Jansa, L. F.;Aubry, M. P.;Gradstein, F. M.;Sharpton, V. L.(ed.);Ward, P.D.(ed.)
  15. Ceme. Conf., No.3072 no.3072 Joachimski, M. M.;Buggisch, W.
  16. Meteoritics v.6 no.127 Krinov, E. L.
  17. Ceme. Conf., No.3099 Master, S.;Reimold, W. U.
  18. Ceme. Conf., No.3100 McDonald, I.;Andreoli, M.A.G.;Hart, R.J.;Tredoux, M.
  19. JGR v.102 no.255 McEwen, A. S.;Moore, J.M.;Shoemaker, E.M.
  20. List of Impact Structures of the World Moilanen, J.
  21. Planet. Space Sci. v.46 no.271 Montanari, A.;Bagatin, A. C.;Farinella, P.
  22. LPI Conf. Ser. v.32 no.1223 Morrow, J.R.;Sandberg, C. A.
  23. Space Sci. Rev. v.96 no.55 Neukum, G.;Ivanov, B. A.;Hartmann, W. K.
  24. LPI Conf. Ser. v.19 no.375 Schnetzler, C.;Honey, F.
  25. Science v.261 no.1564 Sharpton, V.L;Burke, K.;Camargo-Zanoguera, A.;Hall, S. A.;Lee, D. S.;Marin, L. E.;Suarez Reynoso, G.;Quezada-Muneton, J. M.;Spudis, P.D.;Urrutia-Fucugauchi, J.
  26. J.R.A.S. Canada v.92 no.297 Shoemaker, E. M.
  27. LPI Conf. Ser. v.19 no.1141 Strom, R.G.
  28. USGS 2001 Principal Lunar Craters