• Title/Summary/Keyword: geological epochs

Search Result 2, Processing Time 0.017 seconds

THERRESTRIAL IMPACT CRATERING CHRONOLOGY: A PRELIMINARY ANALYSIS

  • Moon, Hong-Kyu;Mi, Byung-Hee;Fletcher, Andre-B.;Kim, Bong-Gyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.191-208
    • /
    • 2001
  • We have recently compiled a database of the properties of 192 impact craters, which supercedes previous compilations. Using our database, the impact structures found in North America, Europe and Australia have been examined; these cratonic areas have been relatively stable for considerably long geological periods, and thus have been best preserved. It is confirmed that there is a close correlation between the geological epoch boundaries, the epochs of mass extinctions, antral the "timing" of impacts. In addition, the terrestrial cumulative flux of objects >20km is found to be $1.77{\times}10^{-15}km^{-2}yr^{-1}$, over the last 120 Myr, which is much smaller than the published values in McEwen et al. (1997) and Shoemaker (1998) ($5.6{\pm}2.8{\times}10^{-15}km^{-2}yr^{-1}$. For terrestrial impact structures with D> 50 km, the apparent cumulative flux over the last 2450 Myr is ~50 times smaller than the corresponding value for the Moon. If we assume that the Earth and the Moon suffered the same level of bombardment over this time, this would mean that the actual flux of impacting bodies, capable of making craters with D)50 km, was ~ 50 times larger than the apparent flux estimated from the currently known terrestrial records.

  • PDF

Review on the Geologic Time Scale in Earth Science Textbooks of Korea and Other Countries and on the International Geologic Time Scale (국내외 지구과학 교과서의 지질 연대와 국제 지질 연대 자료의 검토)

  • Kim, Kyung-Soo;Kim, Jeong-Yul
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.624-629
    • /
    • 2005
  • Numerical data of the geological time scale in Earth Science I, II textbooks and those of University textbooks of Korea and other countries are briefly reviewed. Numerical data of the geologic time scale shown in Earth Science I, II textbooks are mostly out of date and many of them follow those in the University textbooks of Korea. The same situation is apparent for introductory Earth Science or Geology textbooks of other countries as old data exist in their text books as well. There are many new data in the International Stratigraphic Chart (ISC 2000) and International Geologic Time Scale (IGTS 2003) recently updated by International Commission on Stratigraphy (ICS) and A Geologic Time Scale (GTS 2004). Among the new data, some important things are Paleogene and Neogene Periods of Cenozoic Era, Mississippian and Pensilvanian Epochs of Carborniferous Period, Paleoproterozoic, Mesoproterozoic, and Neoproterozoic Eras of Proterozoic Eon, and Eoarchean, Paleoarchean, Mesoarchean, and Neoarchean Eras of Archean Eon. These new data should be used in the new Earth Science textbooks.