TIME EVOLUTION OF SCOUR AROUND BRIDGE ABUTMENTS

  • Francesco Ballio (Politecnico di Milano, dept. I. I. A. R.(Hydraulics and Environment)) ;
  • Enrico Orsi (Politecnico di Milano, dept. I. I. A. R.(Hydraulics and Environment))
  • Published : 2001.10.01

Abstract

Local phenomena around bridge piers and abutments are generally considered to be similar, nevertheless the presence of the incoming boundary layer on the side wall in the abutment case generates extra pressure gradients and consequently a more complex vortex pattern. In the literature, experimental data for bridge abutments are relatively scarce; in particular almost no data are available for the time evolution of the scour. In this work we present the results of several long duration (3 days longrightarrow5weeks) clear water scour laboratory tests around bridge abutments; the time evolution of the erosion process is analysed with respect to local and global characteristic values (maxima, volume, hole shape). In particular we analyse the effect of the constriction ratio b/B between the transversal obstacle dimension and the flume width: in many practical situations abutments (or piers) obstruct a significant portion of the channel, so that the average acceleration due to constriction is expected to increase the scour effects of the local acceleration around the obstacle. Measured values for maximum scour are poorly predicted by literature formulas. Scour depths are positively correlated with the constriction ratio, but increases are smaller than expected from literature indications. Experimental results show that models for bridge piers cannot be directly applied to abutments; in particular, time scales for the latter are significantly larger than for piers.

Keywords

References

  1. AA. VV. (1989). Hydraulic Aspects of Bridges: Assessment of the Risk of Scour, Civil Engineering Department, HandBook n. 47, HR Wallingford
  2. Ballio F., Bianchi A., Franzetti S., De Falco F., Mancini M. (1998). 'Vulnerabilita idraulica di ponti fluviali', Proceedings XXVI Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Catania 9-12 September, 69-79
  3. Bertoldi D.A., Sterling Jone J. (1998). 'Time to scour experiments as an indirect measure of stream power around bridge piers', Proceedings of the International Water Resources Engineering Conference, Memphis, Tenessee, 264-269
  4. Breusers H.N.C., Raudkivi A.J. (1991). Scouring, IAHR Hydraulic Structures Design Manual, A.A. Balkema edt., Rotterdam
  5. Cardoso A.H., Bettess R. (1999). 'Effects of time and channel geometry on scour at bridge abutments', Journal of Hydraulic Engineering, Vol. 125, n. 4, 388-399 https://doi.org/10.1061/(ASCE)0733-9429(1999)125:4(388)
  6. Crippa, S., M. Fioroni (1999). Erosione in prossimita delle spalle dei ponti fluviali-studio sperimentale, Tesi di laurea, Politecnico di Milano
  7. Cunha, L.V. (1973). Discussion, Journal of Hydraulics Division, 98(HY9), pp. 1637-1639
  8. Ettema R.(1980). Scour at bridge piers, Department of civil engineering , University of Auckland, New Zealand, n. 216
  9. Farraday R.V., Chalton F.G. (1983). Hydraulic factors in bridge design, ed. Hydraulics Research Station Limited, Wallingford
  10. Franzetti S., Malavasi S., Piccinin C. (1994). 'Sull'erosione alla base delle pile di ponte in acque chiare', Proceedings XXIV Convegno di Idraulica e Costruzioni Idrauliche, Napoli, Vol. II, T4 13-24
  11. Gill M.A. (1972). 'Erosion of sand beds around spur Dikes', ASCE Journal of Hydraulic Division, Vol. 98, n. HY9, 1587-1602
  12. Gill M.A. (1981). 'Bed Erosion in Rectangular Long Contraction', ASCE Journal of Hydraulic Division, Vol. 107, n. HY3, 273-284
  13. Hoffmans, C.J.C.M., H.J. Verheij. (1997). Scour Manual, Cap. 2. A.A. Balkema, Rotterdam
  14. Islam M.N., Garde R.J., Ranga Raiu K.G. (1986). 'Tempora variation of local scour', Proceedings IAHR Symposium on Scale Effects in Modelling Sediment Transport Phenomena, Toronto, 25-28 August, 252
  15. Kandasamy J.K., Melville B.W.(1998). 'Maximum Local Scour Depth at Bridge Piers and Abutments', Journal of Hydraulic Research, Vol. 36, n. 2, 183-198
  16. Komura S. (1966). 'Equilibrium Depth of Scour in Long Constrictions', ASCE Journal of Hydraulic Division, Vol. 92, n. HY5, 17-37
  17. Laursen E.M. (1962). 'Scour at bridge crossings', ASCE Transactions, Vol. 127, Part I, 166-180
  18. Laursen E.M. (1963). 'An Analysis of Relief Bridge Scour', ASCE Journal of Hydraulic Division, Vol. 89, n. HY3, 93-118
  19. Lim S.Y. (1993). 'Clear Water Scour in Long Contractions', Proceeding Institution of Civil Engineering-Water,Maritime & Energy, Vol. 101, 93-98
  20. Melville B.W. (1992). 'Local Scour at Bridge Abutments', Journal of Hydraulic Engineering, Vol. 118, n. 4, 615-631
  21. Melville B.W. (1997). 'Pier and Abutments Scour:Integrated Approach', Journal of Hydraulic Engineering, Vol. 123, n. 2, 125-136 https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(125)
  22. Melville B.W., Chiew Y.M. (1999). 'Time scale for local
  23. Morris J.L., Pagan-Ortiz J.E. (1997). 'Bridge Scour Evaluation Program in the United States', Proceedings of the 27th IAHR Congress, S. Francisco, Theme A, 110-115
  24. Qadar A., Ansari S.A. (1994). 'Bridge Pier-Scour Equations - An Assessment', Proceedings of Hydraulic Engineering '94, Buffalo NY, August 1-5, Vol. 1, 61-67
  25. Radice, A (2000). Fenomeni erosivi in corrispondenza delle spalle dei ponti, Tesi di laurea, Politecnico di Milano
  26. Richardson E.V., Davis S.R. (1995). Evaluating scour at bridge piers', Journal of Hydraulic Research, Vol. 125, n. 1, 59-65