The Significance of Electroencephalography in the Hypothermic Circulatory Arrest in Human

인체에서 저체온 완전 순환 정지 시 뇌파검사의 의의

  • 전양빈 (부천 세종병원 흉부외과) ;
  • 이창하 (가천 의과대학교 길병원 흉부외과학 교실) ;
  • 나찬영 (부천 세종병원 흉부외과) ;
  • 강정호 (한양대학교 의과대학 흉부외과학 교실)
  • Published : 2001.06.01

Abstract

Background: Hypothermia protects the brain by suppressing the cerebral metabolism and it is performed well enough before the total circulatory arrest(TCA) in the operation of aortic disease. Generally, TCA has been performed depending on the rectal or nasopharyngeal temperatures; however, there is no definite range of optimal temperature for TCA or an objective indicator determining the temperature for safe TCA. In this study, we tried to determine the optimal range of temperature for safe hypothermic circulatory arrest by using the intraoperative electroencephalogram(EEG), and studied the role of EEG as an indicator of optimal hypothermia. Material and Method: Between March, 1999 and August 31, 2000, 27 patients underwent graft replacement of the part of thoracic aorta using hypothermia and TCA with intraoperative EEG. The rectal and nasopharyngeal temperatures were monitored continuously from the time of anesthetic induction and the EEG was recorded with a ten-channel portable electroencephalography from the time of anesthetic induction to electrocerebral silence(ECS). Result: On ECS, the rectal and nasopharyngeal temperatures were not consistent but variable(rectal 11$^{\circ}C$ -$25^{\circ}C$, nasopharynx 7.7$^{\circ}C$ -23$^{\circ}C$). The correlation between two temperatures was not significant(p=0.171). The cooling time from the start of cardiopulmonary bypass to ECS was also variable(25-127min), but correlated with the body surface area(p=0.027). Conclusion: We have found that ECS appeared at various body temperatures, and thus, the use of rectal or nasopharyngeal temperature were not useful in identifying ECS. Conclusively, we can not fully assure cerebral protection during hypothermic circulatory arrest in regards to the body temperatures, and therefore, the intraoperative EEG is one of the necessary methods for determining the range of optimal hypothermia for safe circulatory arrest. :

배경: 저체온은 뇌 대사를 억제하여 뇌를 보호한다고 알려져 있으며, 대동맥 질환 수술 시 완전 순환 정지전에 충분히 시행되고 있다. 일반적으로 임상에서 직장 또는 비인두 온도를 지표로 순환정지를 시행하고 있으나, 순환정지 시 적절한 저체온의 온도 범위나 순환정지 온도를 결정하는 객관적인 지표에 대해서는 아직 명확한 결론이 없다. 본 연구는 수술 중 뇌파검사를 이용해 완전 순환 정지 시 안전한 직장 및 비인두 온도의 적정 수준을 확인하고, 적절한 저체온의 지표로서 뇌파검사의 역할을 알아보고자 하였다. 대상 및 방법: 1999년 3월부터 2000년 8월 31일까지 대동맥 질환으로 대동맥 인조혈관 치환수술 동안 뇌파검사를 병행하면서 완전 순환 정지를 했던 27명의 환자를 대상으로 하였다. 직장 온도와 비인두 온도를 마취유도부터 계속 감시하였으며, 뇌파검사는 10개의 채널로 마취유도부터 뇌 전위 고요상태(electrocerebral silence) 가지 관찰하였다 결과: 뇌 전위 고요 상태에 도달했을 때의 직장 온도와 비인두 온도는 일정한 범위에 있지 않고 다양한 값(직장 11$^{\circ}C$~$25^{\circ}C$; 비인두 7.7$^{\circ}C$ ~23$^{\circ}C$)을 보였으며, 두 온도 사이에 서로 관련이 없었다(p=0.171). 체외순환을 시작하여 뇌 전위 고요상태에 이르기까지 냉각 시간은 25~127분으로 다양하였으며, 환자의 체표면적과 연관이 있었다(p=0.027). 결과: 뇌 전위 고요상태는 다양한 체온에서 발생했으며, 임상에서 일반적으로 적용되는 직장 및 비인두 온도는 뇌 전위 고요상태를 지적할 수 없었다. 그러므로 심혈관계 수술 시 체온에 근거한 저체온 완전 순환 정지는 뇌의 보호를 확신할 수 없으며, 수술 중 뇌파검사의 관찰은 안전한 순환정지를 위한 적절한 저체온의 수준을 확보하기 위해 필요하며 합리적인 방법이었다.

Keywords

References

  1. Ann Surg v.162 no.4 Bloodless surgery by means of profound hypothermia and circulatory arrest;Effect on brain and heart Connolly JE;Roy;A Guernsey JH (et al)
  2. J Thorac Cardiovasc Surg v.108 no.4 Effect of intermittent deep hypothermic circulatory arrest on brain metabolism KimuraT;Muraoka R;Chiba Y (et al)
  3. J Thorac Cardiovasc Surg v.101 no.5 The effect of hypotermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children Greeley WJ;Kern FH;Ungerleider RM (et al)
  4. Ann Thorac Surg v.55 no.6 Superior cerbral protection with profound hypothermia during circulatory arrest Gillinov AM;Redmond JM;Zehr KJ (et al)
  5. J Thorac Surg A study of the electroencephalogram during surgery with deep hypothermia and circulatory arrest in infants Weiss M;Weiss J;Cotton J (et al)
  6. Ann Thorac Surg v.23 no.3 Electroence-phalographic and neurological correlates of deep hypothermia and neurological correlates of deep hypothermia and circulatory arrest in infants Cohen ME;Olszowka JS;Subramanian S
  7. J Thorac Cardiovasc Surg v.81 no.5 Electroencephalographic changes with hypothermia and cardiopulmonary bypass in children Hicks RG;Poole JL
  8. J Thorac Cardiovasc Surg v.99 no.6 The effect of propranolol on the cerebral electrical response to deep hypothermia and total circulatory arrest in lambs Azariades M;Firmin R;Lincoln C (et al)
  9. Exp Neurol v.26 no.3 Electroencephalographic charactristics of brain cooling and rewarming in monkey Massopust LC;Jr Wolin LR;White RJ (et al)
  10. Anesthesiology v.71 no.5 Regional cerbral blood flow and glucose utilization during hypothermia in newborn dogs Palmer C;Vannucci RC;Christensen MA (et al)
  11. Anesthesiology v.82 no.2 Do standard monitoring sites reflect true brain temperature whenpro-found hypothermia is rapidly induced and reversed? Stone JG;Young WL;Smith CR (et al)
  12. J Card Surg v.7 no.2 Cerebral consequences of hypothermic circulatory arrest in adults Griepp EB;Griepp RB
  13. New Eng J Med v.329 no.15 A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardio-pulmonary bypass in infant heart surgery [see comments] Newburger JW;Jonas RA;Wernovsky G (et al)
  14. Ann Thorac Surg v.54 no.4 Temperature monitoring during CPB in infants;does it predict efficient brain cooling? Kern FH;Jonas RA;Mayer JE Jr (et al)
  15. Anesthesiology v.75 no.1 The relationship among canine brain temperature, metabolism, and function during hypothermia Michenfelder JD;Milde JH
  16. Ann Thorac Surg v.67 no.6 Cerebral metabolic suppression during hypothermic circulatory arrest in humans McCullough JN;Zhang N;Reich DL (et al)
  17. J Thorac Cardiovasc Surg v.56 no.5 The effect profound hypothermia on preservation of cerebral ATP content during circulatory arrest Kramer RS;Sanders AP;Lesage AM (et al)
  18. J Neurol Neurosurg Psychiatry v.64 no.5 Cortical brain microdialysis and temperature monitoring during hypothermic circulatory arrest in humans Mendelowitsch A;Mergner GW;Shuaib A (et al)
  19. Br J Neurosurg v.4 no.1 Epidural temperature and possible intracerebral temperature gradients in man Mellergard P;Nordstrom CH
  20. Electroencephalogr Clin Neurophysiol v.72 no.1 Hypothermic-induced electrocerbral silence, prolonged ciculatory arrest, and cerbral protecion during cardiovascular surgery Mizrahi EM;Patel VM;Crawford ES (et al)
  21. Electroencephalogr Clin Neurophysiol v.76 no.3 A Monitoring brain function during cardiothoracic surgery in children and adults at two levels of hypothermia Glaria AP;Murray A
  22. Ann Surg v.147 The physiological and pathological effects of localized cerebral hypothermia Woodhall B;Reynolds DH;Mahaley S (et al)
  23. J. Card Surg v.12 no.2 Use of hypothermic circulatory arrest for cerebral protection during aortic surgery Giepp RB;Ergin MA;McCullough JN (et al)