Overproduction of Streptomyces griseus Protease A and B Induces Morphological Changes in Streptomyces lividans

  • Chi, Won-Jae (Department of Biological Science and AtmanBioScience Inc., Myongji University) ;
  • Kim, Jung-Mee (Department of Biological Science and AtmanBioScience Inc., Myongji University) ;
  • Choi, Si-Sun (Department of Biological Science and AtmanBioScience Inc., Myongji University) ;
  • Kang, Dae-Kyung (Bio-Resources Institute Easy Bio System Inc.) ;
  • Hong, Soon-Kwang (Department of Biological Science and AtmanBioScience Inc., Myongji University)
  • Published : 2001.12.01

Abstract

The sprA and sprB gene encoding chymotrypsin-like proteases Streptomyces griseus protease A (SGPA) and Streptomyces griseus protease B (SGPB) and the sprT gene that encodes Streptomyces griseus trypsin (SGT) were cloned from Streptomyces griseus ATCC10137 and overexpressed in Streptomyces lividans TK24 as a heterologous host. The chymotrypsin activity of tole culture broth measured with the artificial chromogenic substrate , N-succinyl-ala-ala-pro-phe-p-nitroanilide, was 10, 14 and 14 units/mg in the transformants haboring the sprA, sprB and sprD genes, respectively. The growth of S. lividans reached the maximum cell mass after 4 days of culture, yet SGPA and SGPD production started in the stationary phase of cell growth and kept increasing for up to 10 days of culture in an R2YE medium. The trypsin activity of the culture broth measured with the artificial chromogenic substrate , N-${\alpha}$-benzoyl-DL- arginine-p-nitroanilide , was 16 units/mg and SGT production started in the stationary phase of cell growth and kept increasing for up to 10 days of culture in an R2YE medium. The introduction of the sprA gene into S, lividans TK24 triggered the biosynthesis of pigmented antibiotics, actinorhodin and undecylprodigiosin, and induced significant morphological changes in the colonies in Benedict, R2YE, and R1R2 media. In addition, the introduction of the sprT gene also induced morphological changes in the colony shape without affecting the antibiotic production, thereby implying that certain proteases would appear to play very important and specific roles in secondary-metabolites formation and morphological differentiation in Streptomyces.

Keywords

References

  1. Evolutionary implications v.11 The proteolytic enzymes of the K-1 strain of Streptomyces griseus obrained from a commercial preparation (Pronase) Awad, W. M. Jr.;K. Brew;J. t. Powell;D. J. RussinlJ. F. Seber;S. Siegel;K. D. Vosbeck
  2. Anal. Biochem. v.72 A rapid and sensitive method or the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford, M. M.
  3. J. Microbiol. v.39 Overexpression of the sprD Gene encoding Streptomyces griseus protease D stimulates actinorhodin production in Streptomyces lividans Choi, S.-S.;W.-J. Chi;J. H. Lee;S.-S. Kang;B. C. Jeong;S.-K. Hong
  4. Mol. Gen. Genet. v.222 Cloning and characterization of a gene of Streptomyces griseus that increases production of extracellular enzymes in several species of Streptomyces Daza, A.;J. A. Gil;T. Vigal;J. F. Martin
  5. Chin. J. Biotechno. v.15 A noble gene: sawD reated to the differentiation of Streptomyces ansochromogenes Gang, L.;C. Wei;T. Yuqing;T. Huarong;K. F. Chater;M. J. Buttner
  6. J. Mol. Biol. v.166 Studies on transformation of Escherichia coli with plasmids Hanahan, D.
  7. J. Bacteriol. v.169 Characterization and structure of gene forproteases A and B from Streptomyces griseus Henderson, G.;P. Krygsman;C. J. Liu;C. C. Davey;L. T. Malek
  8. Mol. Gen. Genet v.236 Effects of protein kinase inhibitors on in vitro protein phosphorylation and cellular differentiation of Streptomyces griseus Hong, K. K.;A. Matsumoto;s. Horinouchi;T. Beppu
  9. J. Microbiol. Biotechnol. v.8 Effects of protein kinase inhibitors on in vitro protein phosphorylation and on secondary metabolism and morphogenesis in Streptomyces coelicolor A3(2) Hong, S. K.;S. Horinouchi
  10. J. Bacteriol. v.173 Phosphorylation of the AfsR product, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2) Hong, S. K.;M. Kito;T. Beppu;S. Horinouchi
  11. J. Microbiol. Biotechnol. v.2 Cloning and sequencing of a gene cluster for the resistance to doxorubicin from Strepomyces peucetius subsp. caesius ATCC 27952 Hong, Y. S.;C. K. Hwang;D. Y. Hwang;Y. H. Kim;S. J. Kim;J. J. Lee
  12. The John Innes Foundation Genetic manipulation of Streptomyces: A loboratory manual Hopwood, D. A.;M. J. Bibb;K. F. Chater;T. Kieser;C. J. Bruon;H. M. Kiesser;D. J. Lydiate;C. P. Smith;J. M. Ward
  13. Gene v.95 Primary structure of AfsR, Aglobal regulatory protein for secondary metabolite foramtion in Streptomyces coelicolor A3(2) Horinouchi, S.;M. Kito;M. NishiyamalK. Furuya;S. K. Hong;K. Miyake;T. Beppu
  14. J. Microbiol. Biotechnol. v.8 An efficient approach for cloning the genes for P450 hydroxylase homogues from Actinomycetes Hyun, C.-G.;J.-M. Kim;S.-K. Hong;J.-W. Suh
  15. Microbiology v.142 Trypsin-like protease of Streptomyces exfoliatus SMF13, a potential agent in mycelial differentiation Kim, I. S.;K. J. Lee
  16. Biochem. J. v.331 Characterization of the leupeptin-inactivating enzyme from Streptomyces esfoliatus SMF13 produces leupeptin Kim, I. S.;Y. B. Kim;K. J. Lee
  17. J. Microbiol. v.38 Streptomyces griseus HH1, An A-factor deficient mutant, produces diminished level of trypsin and increased level of metalloproteases Kim, J.-M.;S.-K. Hong
  18. Biochem. Biophys. Res. Commun. v.1881 Molecular cloning and nucleotide sequence of Streptomyces griseus trypsin gene Kim, J. C.;S. H. Cha;S. T. Jeongl;S. K. Oh;S. M. Byun
  19. J. Microbiol. Biotechnol. v.8 Purification and Characterization of Streptomyces griseus trypsin Overexpressed in Streptomyces lividans Koo, B.-J.;K.-H. Bai;S. M. Byun;S.-K. Hong
  20. J. Biochem. Mol. Biol. v.32 Optimal Production Conditions of Streptomyces griseus Trypsin (SGT) in Streptomyces lividans Koo, B.-J.;J.-M. Kim;S. M. Byun;S.-K. Hong
  21. J. Microbiol. Biotechnol. v.9 Heterologous expression of Streptomyces albus genes linked to an integrating element and activation of antibiotic production Kwon, H. J.;S. Y. Lee;S. K. Hong;U. M. Park;J. W> Suh
  22. Molecular cloning: A laboratory manual Maniatis, T.;E. F. Fritsch;J. Sambrook
  23. Gene v.146 Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase Matsumoto A.;S. K. Hong;H. Ishizuka;S. Horinouchi;T. Beppu
  24. Antibiot. Khimioter v.42 Physiological role of extracellular proteases and calsium ions in the processes of differentiation and antibiotic production by Streptomyces albogriseolus Moncheva, P. A.;S. T. Danova;S. K. Antonova;I. V. Ivanova
  25. J. Biochem. v.64 Studies on proteolytic enzymes (pronase) of Streptomyces griseus K-1. Ⅱ. Separation of exo- and endopeptidases of pronase Narahashi, Y.;K. Shibuya;M. Yanagita
  26. J. Biol. Chem. v.274 Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. Analogies with the biochemical processes decribed in late steps of eukaryotic apoptosis Nicieza, R. G.;J. Huergo;B. A. Connolly;J. Sanchez
  27. J. Gen. Microbiol. v.80 Formation and reversion of streptomycete protolasts: Cultural conditions and morphological study Okanish, M.;K. Suzuki;H. Umezawa, H.
  28. Biochemistry v.14 Enzymatic and physicochemical properties of Streptomyces griseus trypsin Olfason, R. W.;L. B. Smillie
  29. J. Microbiol. Biotechnol. v.10 Genetics analysis of absR, a new abs locus of Streptomyces coelicolor Park, U.;J. W. Suh;S. K. Hong
  30. J. Biol. Chem. v.270 Protease evolution in Streptomyces griseus Sidhu, S. S.;G. B. Kalmar;L. G. Willis;T. J. Borgford
  31. J. Biochem. v.116 The specificity of proteases from Streptomyces griseus (pronase) Trop, M.;Y. Birk
  32. J. Biochem. v.110 Purification and characterization of Streptomyces griseus metalloendopeptidases Ⅰand Ⅱ Tsuyuki, H.;K. Kajiwara;A. Fujita;T. Kumazaki;S. Ishii
  33. Gene v.169 The aerial mycelium-defective phenotype of Streptomyces griseus resulting from A-factor deficiency is suppressed by a Ser/Thr kinase of S. coelicolor A3(2) Ueda, K.;T. Umeyama;T. Beppu;S. Horinouchi
  34. Mol. Microbiol. v.32 Alteration of the synthesis of the Clp ATP-dependent proteases affects morphological and physiological differentiation in Streptomyces Valerie do Crecy-Lagard V.;P. Servant-Moisson;J. Vialal;C. Grandvalet;P. Mazodier
  35. Genes Dev. v.7 Multiple extracellular signals govern the production of a morphogenetic coelicolor Willwy, J.;J. Schwedock;R. Losick
  36. Genes Dev. v.7 Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor Willwy,J.;J.Schwedock;R.Losick