광굴절 광기전력 물질에서의 어두운 공간솔리톤 발생

The generation of dark spatial soliton in photorefractive photovoltaic medium

  • 발행 : 2001.02.01

초록

광굴절 광기전력 특성을 갖는 Fe를 도핑한 LiNbO$_3$결정에서의 어두운 공간 솔리톤의 발생과 이의 광도파로 역할에 대해 연구하였다. 파장이 488nm인 cw $Ar^{+}$ 레이저를 이용하여 입사빔의 세기가 10mW/$cm^2$ 이하에서도 어두운 공간솔리톤이 발생됨을 관측하였다. 빔의 세기 변화 방향이 광축에 수직인 경우에는 자기확산 효과를 관측할 수 없었으나 광축에 평행한 경우에는 이 효과를 관측할 수 있었다. 이를 통해 매질에서의 굴절률 변화가 빔의 세기 변화 방향과 광축방향이 평행할 때만 일어남을 확인하였다 파장이 633nm인 He-Ne 레이저를 어두운 공간솔리톤에 통과시킴으로써 빔의 집속효과를 관측하였다. 이를 통해 어두운 공간솔리톤의 광도파로 역할을 확인하였다.

We investigate the generation of the dark spatial soliton and its role of wave guiding in Fe doped$LiNbO_3$ A cw Ar+ laser of 488 nm is used for the generation of the dark spatial soliton. The generation of the dark spatial soliton is observed even at the laser intensity as low as 10 mW/cm2. The self-defocusing effect is observed when the direction of the intensity variation is parallel to the optic axis, while it can't be seen when perpendicular to the axis. So, it is verified that the refractive index change is generated parallel to the optic axis. When 633 nm He-Ne laser beam is injected into the dark spatial soliton, the beam propagates just as in the diffraction free medium. So, it is verified that the dark spatial soliton can act as a waveguide.eguide.

키워드

참고문헌

  1. Opt. Lett. v.15 no.9 Observation of spatial optical solitons in a nonlinear glass waveguide J. S. Aitchinson;A. M. Winer;Y. Silberberg;M. K. Oliver;J. L. Jackel;D. E. Leaird;E. M. Vogel;P. W. Smith
  2. Phys. Rev. Lett. v.68 no.7 Spatial solitons in photorefractive media M. Segev;B. Crosignani;A. Yariv;B. Fischer
  3. J. Opt. Soc. Am. B v.10 no.3 Self-trapping of optical beams in photore-fractive media B. Crosignani;M. Segev;D. Engin;P. Diporto;A. Yariv;G. Salamo
  4. Phys. Rev. Lett. v.71 no.4 Observation of self-trapping of an optical beam due to the photorefractive effect G. Duree;J. L. Shultz;G. Salamo;M. Segev;A. Yariv;B. Crosignani;P. DiPorto;E. Sharp;R. R. Neurgaonkar
  5. Phys. Rev. Lett. v.74 no.11 Dark photorefractive spatial solitons and photorefractive vortex solitons G. Duree;M. Morin;G. Salamo;M. Segev;A. Yariv;B. Crosignani;P. DiPorto
  6. Opt. Lett. v.19 no.16 Dimensionality and size of photorefractive spatial solitons G. Duree;G. Salamo;M. Segev;A. Yariv;B. Crosignani;P. DiPorto;E. Sharp
  7. Opt. Lett. v.21 no.5 Two-dimensional steady-state photore-fractive screening solitons M. F. Shih;P. Leach;M. Segev;M. H. Garrett;G. Salamo;G. C. Valley
  8. Electron. Lett. v.31 no.10 Observation of 2-dimensional steady-state photorefractive screening solitons M. F. Shih;M. Segev;G. C. Valley;G. Salamo;B. Crosignani;P. DiPorto
  9. Phys. Rev. A v.50 no.6 Dark and Bright photovoltaic spatial solitons G. C. Valley;M. Segev;B. Crosignani;A. Yariv;M. M. Fejer;M. C. Bashaw
  10. Phys. Rev. A v.52 no.4 Observation of dark photovoltaic spatial solitons M. Taya;M. C. Bashaw;M. M. Fejer;M. Segev;G. C. Valley
  11. J. Opt. Soc. Am. B v.14 no.7 Photovoltaic spatial solitons M. Segev;G. C. Valley;M. C. Bashaw;M. Taya;M. M. Fejer
  12. Opt. Commun. v.141 no.5-6 Estimation of photovoltaic field in $LiNbO_3$ crystal by z-scan S. Bian
  13. J. Opt. Soc. Am. B v.16 no.4 Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-deflection L. Jinsong;L. Keqing
  14. Ferroelectrics v.22 Holographic storage in electrooptic crystals. I. steady state N. V. Kukhtarev;V. B. Markov;S. G. Odulov;M. S. Soskin;V. L. Vinetskii
  15. Opt. Eng. v.22 no.6 Optimal properties of photorefractive materials for optical data processing G. C. Valley;M. B. Klein