A FEYNMAN FUNCTIONAL FOR THE GLOBAL POSITIONING SYSTEM

  • Published : 2001.03.01

Abstract

A Feynman functional formulation is given for the Global Positioning System, GPS. Both the sequential and analytic Feynman functionals are presented for the classical, exterior, gravity problems which included rigid body rotations, special relativity and some general relativity corrections. A mathematically rigorous approach is introduced whose solutions exist, are unique and which depend continuously on the intial data. This formulation is convergent and has the finite approximation property. It is emphasized that all of the problems studied are classical (not quantum) evolution systems.

Keywords

References

  1. Rev.Modern Phys v.20 Space-time approach to non-relativistic quantum mechanics R.P.Feynman
  2. Quantum mechanics and Path Integrals R,P,Feynman;A,R,Hibbs
  3. J.Math Mech. v.18 An operator-valued function space integral and a related integral equation R,H,Cameron;D,S,Storvick
  4. Lecture Notes in Math v.523 Mathematical Theory of Feynman Path Integrals S.Albeverio;R.Hoegh-Krohn
  5. Mem.Amer.Math.Soc v.46 no.288 A simple definition of the Feynman integral with applications R,H,Cameron;D,S,Storvick
  6. J.Math.Phys v.23 The equivalence of two approaches to the Feynman integral G.W.Johnson
  7. J.Math.Phys v.25 A bounded convergence theorem for the Feynman integral G.W.Johnson
  8. Int.Eqs. and Oper.Theory v.8 Perturbation theory and dominated convergence theorem for Feynman integrals M.L.Lapidus
  9. C.R. Acad.Sci.Paris Ser. A v.291 Mean and product formulas for the imaginary resolvents M.L.Lapidus
  10. C.R.Acad.Sci.Paris Ser.A v.291 Generalization of the Trotter-Lie formula M.L.Lapidus
  11. J.Korean Math.Soc v.28 Necessary and sufficient conditions for the Fresnel integrability of certain classes of functions K.S,Chang;G,W,Johnson;D.L.Skoug
  12. Am. Math.Soc v.100 Functions in the Fresnel Class Proc. K.S,Chang;G,W,Johnson;D.L.Skoug
  13. J.Funct.Anal v.63 Product formula for imaginary resolvents with application to a modified Feynman integral M.L.Lapidus
  14. Mem.Amer.Math.Soc v.62 no.351 Generalized Dyson series generalized Feynman diagrams the Feynman integral and Feynman's operational calculus G.W.Hohnson;M.L.Lapidus
  15. The Feynman integral and Feynman's operational calculus G.W.Hohnson;M.L.Lapidus
  16. Acta Applicandae Mathematicae v.47 B.DeFacio;G.W.Johnson;M.L.Lapidus
  17. Pacific J.Math v.83 Scale-invariant measurability in Wiener space G.W.Johnson;D.L.Skoug
  18. Amm.Inst.H.Poincare Phys. Theor v.21 Analytic and sequential Feynman integrals on avstract Wiener and Hilbert spaces and a Cameron-Martin formula G,Kallianpur;G,Kannan;R.L.Karandikar
  19. J.Math.Phys v.11 Exponential Hilbert spaces: Fock space revisited J.R.Klauder
  20. Proc.London Math.Soc v.66 no.3 The Rieman zeta-function and the one-dimensional Weyl-Berry conjicture for fractal drums M.L.Lapidus;C.Pomerance
  21. J.Math.Phys v.5 Feynman integrals and the Schrodivger equation E,Nelson
  22. Math.Notes. Dynamical theories of Brownian motion E.Nelson
  23. Functional integration and quantum physics B.Simon
  24. J.Neyman On some connections between probability tyeory and differential and integral equations in Proc. Second Berkeley Symposium on Mathematical Statistics and Probability Ed. M.Kac
  25. Fundamental theories of physics, D.L.Reidel Open Quantum Systems and Feynman Inergrals P.Exner
  26. Wuantum physics; a functional intergral point of view 2/E J.Glimm;A.Jaffe
  27. Phys.Rev v.D18 Path Integral Representation of the S-Matrix C..Hammer;J.E.Shrauner;B.DeFacio
  28. Statistics and Polymer Physics,2/E Path Integrals ij Quantum Mechanics H.Kleinert
  29. Gen.Rel.and Grav v.8 Path Integral in Phaes Space C.DeWitt-Morette;M.Maheshwari;B,Nelson
  30. Oxford Mathematical Monographs Semigroups of Linear Operators and Applications J.A.,Goldstein
  31. Amer.Math.Soc.Colloq.Publ.,rev.ed,Amer.Math.Soc. Functional Anslysis and Semigroups E,Hille;R,S.Phillips
  32. Phys.Lett v.B110 Functional measure topology and dynamical supersymmetry breaking S.Cecotti;L.Girardello
  33. Physics Lett v.104 Perturbations of the Laplacian supported by null sets with applications to polymer measures and quantum fields S.Albeverio;R.Hoegh-Krlhn;W.Karwowski;T.Lindstrom
  34. Exper.Math v.4 A stochastic model for the orbits of planets and satellites; and interpretatoion of the Titus-Bide law S.Albeverio;P.Blanschard;R.Hoegh-krohn
  35. J.Math Phys v.20 Path Integrals for waves in Random Media R,Dashen
  36. Phys.Rev v.B5 Optical Absorption of Polarons in the Feynman-Hellworth-Iddings-Platzman Approximation J.T,Devreese;J,DeSitter;M.Goovaerts
  37. Techniques and Applications of Path Integration L.S.Schulman
  38. Phys.Rev. v.76 Space-time approach to quantum electrodynamics R,P.Feynman
  39. Geodesy and GPS Linear Algebra G.Strang;K.Borre
  40. GPS for Geodesy 2/E P.G.Tennissen;A,Kleusberg(eds)
  41. Theory and Practics, 4/E Global Positioning System B.Hofmann-Wellenhof;H.Lichtenegger;J.Collins
  42. Theory of the Motion of Celestial Bodies in Conic Sections About the Sun C.G.Gauss
  43. Grundlehren der Mathematischen v.187 Lectures on Celestial Mechanics 2/E C,L.Siegel;J.K.Moser
  44. Addison-Wesley Reading Foundations of Mechanics 2/E R.Abraham;J,E,Marsden
  45. Mathematical Methods in Classical Mechanics 2/E V.I.Arnold
  46. Gravitation W.H.Freeman C.W.Misner;K.S.Thorne;J.A.Wheeler
  47. Manuscripts Geodetica v.16 Relativistic Manifestations of Gravitational Fields in Gravimetry and Geodesy S.M.Kopeiken
  48. J.Math.Phys v.38 Propagation of light in the stationary field of multipole gravitational lens S.M.Kopeiken
  49. Ann.Phys.(Leipzig) v.8 On Measuring Gravitomagnetism via Spaceboard Clocks?: A Gravitomagnetic Clock Effect B.Mashhoon;F.Gronwald;D.S.Theiss
  50. Gravitation: An Introduction to Current Research R.Arnowitt;S.Deser;C.W.Misver;L.Witten(ed)