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A FEYNMAN FUNCTIONAL FOR
THE GLOBAL POSITIONING SYSTEM

Brian DgFaAcio

ABSTRACT. A Feynman functional formulation is given for the
Global Positioning System, GPS. Both the sequential and analytic
Feynman functionals are presented for the classical, exterior, grav-
ity problems which include rigid body rotations, special relativity
and some general relativity corrections. A mathematically rigor-
ous approach is introduced whose solutions exist, are unique and
which depend continuously on the initial data. This formulation is
convergent and has the finite approximation property. It is empha-
sized that all of the problems studied are classical (not quantum)
evolution systems.

1. Introduction

A Feynman integral [1, 2] has proven to be an interesting class of
mathematical structures [3-25] and has provided useful ideas to theoret-
ical physics [26-38]. These objects are integrals only in some general,
conditionally convergent sense and can be described better as Feynman
functionals or as the quantities in some Feynman operational celculus.
Feynman integrals provide ways of formulating new classes of problems,
i.e. the path sum (or sum over histories} can be generalized to include
sums over homotopically inequivalent paths or to give new ways to think
about existing problems such as polymers. They provide a bridge be-
tween deterministic and stochastic approaches, give new tools for as-
ymptotic analysis and very general numerical approaches to physical
systems. Feynman integrals have much to teach us, hence, their math-
ematical structures must be soundly based on theorems and proofs. In
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this paper the above point of view will be directed to the Global Posi-
tioning System, GPS. The Global Positioning System, is a modern tech-
nological marvel which can measure locations on the earth’s ellipsoid to
within a few millimeters. To date GPS [39-41] represents the ultimate
extension of geodesy and navigation so it is a fitting tribute to C. F.
Gauss [42], the creator and pioneer of geodesy. A number of practical
fields such as navigation and surveying have already been revolutionized
by GPS, and major advances in the knowledge of such areas as general
relativity, astrophysics, geophysics and many others have been provided.
The GPS was used to obtain the experimental proof of the continental
drift, and is presently accumulating enormous databases on earthquakes
prone areas.

The GPS consists of over 24 satellites each costing about $60,000,000
orbiting the earth in six planes with three major control stations con-
nected to over one hundred monitor stations on the ground. About
thirty satellites occupy six planar orbits about four earth radii above
the center of the earth, and broadcast radio frequency signals to each
ground station. Each satellite and ground station has a very accurate
clock. At least four different signals are required to determine x, y, z,
and t of a GPS transponder (actually 6-8 are usually within the line
of sight of a ground station). A Kalman filter tracks each satellite and
differences of two signals reduce several errors. By weighting measured
averages by their variances and by collecting enormous data sets, the
errors become quite small.

This accuracy needs to be understood and it needs to be improved. In
this paper, a Feynman functional based upon the sequential and analytic
Feynman functionals is presented and shown to provide new perturba-
tion solutions of some of the evolution equations for the GPS. A recent
paper by B. DeFacio, G.W. Johnson and M. L. Lapidus [16] is used.

The framework used here was originally created by Cameron and
Storvich, and has been extended by G. W. Johnson, M. L. Lapidus, D.
Skoug, G. Kallianpur and many others. A new book by G. W. Johnson
and M. L. Lapidus by Oxford University Press [15] presents much of
this material in great detail. Tt is fitting and proper that this beautiful
mathematics helps to understand and to improve the Global Positioning
System. A schematic picture of the GPS constellation of satellites is
shown in Fig. 1. There are three principal ideas behind the GPS system:

1. Work with two (or more) receivers which is called differential GPS,
abbreviated as DGPS. By using differences of positions, several of
the larger random errors almost cancel.
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FIGURE 1. Schematic picture of the GPS constellation:
6 planes with at least 4 satellites in each. Each satellite
is about 15 minutes less than 2 orbits/day.

2. Repeat the measurements and thereby reduce the variance con-
siderably. Use updating techniques together with the weighting
of measuremenis by their variances in the data processing. This
saves computational time since large matrices do not need to be
diagonalized repeatedly. It also keeps inaccurate data from desta-
bilizing the calculated averages. A suitable Kalman estimator, or
filter, updates the changes in satellite and receiver positions due
to their motions.
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3. Estimate and model each known source of error. The major sources
of error in DGPS and the bounds on their approximate magni-
tudes are: Ephermeris (satellite orbital data) ~ 2m; satellite clock
~ 2m; ionosphere 2 1m (50 - 1000 km above the earth’s surface);
troposphere = 1m (9 - 16 km above the earth’s surface); and mul-
tipath interference of signals =~ 0—2m. These are each complicated
problems. The reader is referred to the references, esp. [39-41], for
further discussions. This paper will concentrate on the corrections
to the ephermeris (orbit) data. This would be a simple problem if
the accuracy demanded of GPS were not so high. But all special
relativity and some of the linearized general relativity corrections
are required to achieve and improve the present accuracy.

The goal of this study is to formulate a simple model to help under-
stand the GPS and to contribute to the ongoing problem in improving
its accuracy and precision. The model must be mathematically rigor-
ous and must be generalizable to all relativity effects and must include
noise. Some Feynman functionals have been applied to simpler satel-
lite and orbit problems [34] and to a phase space Feynman functional
for general relativity [29]. Uniqueness can be proven for an adequate
class of these structures [16]. The sequential functionals carry the finite
approximation property for insight and also converge. A more general
model, applicabie to the GPS system, is presented here.

In the next section, the evolution equations required will be pre-
sented and both the idealized model and a more realistic model will be
discussed. In section 3, path integral perturbations for each model will
be discussed. In section 4, the conclusions and outlook for further study
will be presented.

2, The time evolution of a GPS satellite position

The basis of this work is most directly that of Cameron and Storvick
[3,5], Johnson [6, 7, 15, 17], Lapidus [8-11, 14,21], Kallianpur, Kannan,
and Karandikar [18] and DeFacio, Johnson and Lapidus [16]. Although
the quantum disentanglement of [16] is not used in the present work,
it is used to carry out the nonlinear coordinate transformations among
different sets of spatial axes required among the different astronomy,
geophysics and space physics coordinate systems. Since the SO(3) ma-
trices which implement these coordinate changes do not commute, a
classical disentanglement is required. Also the measured values used are
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corrupted by noise, this classical mechanics [42-45] problem needs real-
istic noise for input into the Kalman estimator (filter). The accuracy of
the GPS requires all special relativity [46] and some general relativity
[46-50] corrections. The orbiting satellite interacts with the earth, the
sun, the space environment, the moon and nearby satellites, gravita-
tional radiation, and fluctuations occur in the atomic clocks which are
used. Thus, the smooth elliptic path of a Keplerian motion is jerked
one way and another by these perturbations. The “realistic noise” of a
satellite path is the totality of these (random) interactions. The path
integral gives a convergent perturbation expansion for evaluating these
effects. From this approach some of the errors from these effects can be
removed by improving the model.

Next, the interaction potential energy for the exterior problem must
be given. If Ry, Ry are the radii of two approximately spherical bodies
with masses M7, My whose centers are at 7] and 72 at time ¢, then it
is common to treat the basic interaction as Newtonian gravity between
two point particles in an inertial frame as

G M Ms
1) vi(r) = T2
where G is the universal gravitational constant and r = |fi — 73| is

the length of seperation. This is a singular potential which can only
be treated by a modified Feynman integral {11, 13, 16| using imaginary
resolvent. arguments. But the blowup singularity at r — 0 is physically
impossible for non zero radius bodies and a more realistic modified basic
interaction is given by the exterior problem

iy < {2 Rt R
2 ar +iay, 0<Ryg<r< R+ R

(2)

where a;,as are real valued constants. Clearly a satellite or observer
in the more realistic situation of the potential in Fq. (2) above, has
stability since this potential is bounded below. One advantage of the
present formulation is that the model is stable [7, 8, 16] whereas the
point particle model in Eq. (1) has only been proven to be stable in a
few special cases such as the 2-D restricted 3-body problem. Another
is that a solution is known to exist and to be unique in the linear case.
The nonlinear cases are far more complicated with many examples and
special cases known, but no general resuits known to me. The poten-
tial in Eq. (2) is in L° and a variety of formulations ranging from the
Fresnel integrable functions [4, 12, 13| to the Cameron-Storvick sequen-
tial path integral [3, 5, 19] or the analytic Feynman integrals [5, 6, 19],
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the Lie-Trotter formula {9, 10] and the various Banach spaces [5, 6, 16].
The GPS problems addressed here are all described by the exponential
evolution systems of [16]. It is not surprising that solutions to and in-
sights into the (almost) random perturbations of the GPS are simply
and naturally carried by a Feynman path integral. After all, some of
its first rigorous formulations [5} were based on the Borel functions of a
pair (v, z) consisting of the scale-invariant almost everywhere subspace
of paths z,z(0) = 0, in a Wiener space Cy[0,t] and v € L?(R"), and
were linear, stochastic integrals.

The ideal problem which generalizes Eq. (1) for the linearized general
relativistic corrections for the GPS satellites is very difficult. Interesting
new effects occur in the paramatized post-Newtonian effective potentials
for the perturbations to Eq. (2}, which can be written as in [46, 50] for
r > R (earth),

GI 3
VGl ('r) a4 ﬁ l:—(sz'j + ﬁwzw»"]
1
—+ 0 (6—,)
T-O
(3) Vealr) = Geo%  wi, IkJT—B +0 (r_4) )

The total potential is then V = Vo + Vg1 + Vg2 where V5 together with
Hy is placed in the semigroup term exp(—t o) = exp(tHy — tVa). Be-
cause it is much larger than the remaining terms, the semigroup is taken
as the “free” or “unperturbed” term. The remaining terms of Vg and
Ve perturb the elliptic orbit. They open the orbit by a small holonomy
and produce a “rough hash” on it due to the other physical effects in
these potentials and impulse interactions with other bodies. This corre-
sponds to using the analysis in [16] in the formulation of this approach.
Note the singularities 1/r%,1/7%,1/7%, and so on which will require the
creation of new mathematics before the interior problem r < R can be
treated by a Feynman integral. In Eq. (3), I is the (spatial) moment
of inertia, w' is some spatial component of an angular momentum coor-
dinate, “” is a rotating coordinate frame fixed to the earth, wg is the
instantaneous angular rotation of the earth, and €% is the Levi-Civiti
antisymimetric tensor. The second potential Vi, can be eliminated by
wg — 0, but only at a terrible cost in the added complication of the
other potential energy function. Even at this level, our GPS ephermeris
problems are complicated. There are many other perturbations which
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must also be considered. In the lowest order of perturbation theory, the
paths depend only on the coordinates of the unperturbed problem. The
spherical harmonics are used in a new version of the Arnowitt, Deser,
Misner (hereafter ADM) expansion. The more standard tetrad expan-
sion of the local coordinates [46] is a poor choice for the GPS problems
considered here because the earth’s rotation about its NS axis is an im-
portant effect, as are many relations of (most!) interesting astrophysical
objects (e.g. pulsars}. We do not discuss in detail the numerous inter-
esting questions which arise in these problems for lack of space and time.
We comment that our independent work verifies large portions of refs.
[47-49] in detail. Several of these include:

1. The space-time coordinates are on a punctured harmonic mani-
fold and are not restricted to Lorentz boosts, although these are
included.

2. The synchronization of any three clocks A, B, and C at any three
distinct points on earth, which are not the N or S pole of rotation,
at successive times t4 < tg < fo are non-transifive. That is if
on earth, clock A is synchronized with clock B using light pulses
and then clock B is synchronized with clock C using light pulses;
the clock A is not synchronized with clock C. This is a holonomy
effect caused by the earth’s rotation.

3. Several related effects on the spatial motions follow from the po-
tential in Eq. (3), because the perturbation to Eq. (2) change the
orbit from closed to open and from periodic to almost periodic.

4. One has, and uses, an inertial frame of the sun, earth, moon,
satellite system. However, measurements are made on rotating
and accelerating bodies and require a careful conversion. A space-
born clock measures proper time along its world line. Qutside
a rotating, electrically charged body a clock in a circular orbit
(the eccentricity is small for GPS satellites so this is a reasonable
simplification). In this case, a small gravitomagnetic effect from
general relativity should occur [49]. It has never been experimen-
tally observed but will be studied in the next generation of NASA
experiments, LIGO.

There are many more open questions. The GPS may contribute to the
understanding of some of these, and others may improve the GPS.

The unperturbed evolution system for this work is the system of
ODE’s
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(4) Q=(?)=J-D-H:( P)

P *Hq
where ¢ = (g1, ¢2, - Qn)T,P = (p1,p2,"* * Pn) is the n generalized coordi-
nates g and their n canonical momenta p, D = (%, .- 3—‘3;, B%T’ .- %)T

is the differential operator with respect to phase space coordinates (g, p),
J = ( _01 é ) is the 2n x 2n metric matrix for the symplectic group
Sp{2n), H = H(p, q)} is the system Hamiltonian and Q =dQ/dt. Let e,
be a small, real, positive parameter and let ¢ = (g1,92)7 bea T = 2w_7r
periodic perturbation. The detailed forms of gy, g are obtained from
taking suitable coordinate transformations of the gradients of the po-
tential energy functions in Eq. (3). These lead to systems of evolution
equations of the form

(5) Q=JDH +¢,9

and a first order perturbation theory is derived. The reader is reminded
that the components of g contain several orders of terms from post-
Newtonian gravity and possibly noise. For example, the gravitomagnetic
clock effects briefly discussed in this section first occur in the 1/r%,1/r°
terms in Eq. (2).

The solution to Eq. {5) is

(6) Q) = e'Q(0)
which is a unitary group for energy conserving systems. It can also be
written as a Cp semigroup [30] with infinitesimal generator A = —iH.

It is clear that the system of 2n ODE’s in Eq. (5) are unbounded linear
operators, and it is useful to use the semigroup structure in these cases
[15,16,30].

3. A Feynman functional for the GPS

In this section, Feynman functional for modeling GPS errors and for
data analysis will be formulated. The sequential approach is central be-
cause a finite approximation is desired. For a perturbation series, it is
necessary to prove convergence. The paths of satellites or planets etc.
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are not directly used because they necessitate repeated limits. An eval-
nation, as in [5,15,16,18] involving a single limit of Lebesque integrals
is sought and a clear relation to the reproducing kernel Hilbert space,
RKHS, see esp. (18], is needed. The RKHS structure is needed here be-
cause the GPS amasses very large data coilections. The purpose of this
data is to provide information about positions on earth, velocities and
gravitational fields. The Kalman filter: estimators, the encoding and
decoding on the carrier frequencies and the transmission of the electro-
magnetic signals carrying the codes bring data in a noisy environment
are all important parts of this large complex system. The ground sta-
tion receives massive input from these various direct physics problems.
Whether geodesy, navigation, etc.is the task the ground stations must
solve the noisy, generalized-inverse (ill-posed) problem to obtain the in-
formation needed from these signals. The RKHS have an invertibility
structure and are closely related to Gaussian probability distribution
functions. There are many problems in modern physics which do not
satisfy the central limit theorem nor the Poisson probability distribu-
tion function, because they are “non-equilibrium” in some sense. The
perturbation structure proposed here can also correct some of these pdfs
by modeling away non-Gaussian effects, as well as the signal structure.
Kallianpur, Kannan and Karandikar [18] gave an especially clear and
useful discussion of these matters together with their relations to ana-
lytic Feynman integrals. Their paper along with those by Johuson [6,16]
serve as cornerstones for the rest of this-section.

In Eq. (6) the exponential form of the time evolution is given. Next,
a specific set of assumptions from [16] which allow the proof of existence
and uniqueness of solutions and their continuous dependence on initial
data is listed in three hypothesis, {H1)-(H3). The notation is such that
the exponential evolution operator in eq. (6) is written as

(7) exp(—tHt) = exp{— at+/ Bi(s)ulds) + f Bn(s)pnlds)}

where different choices of (B1,101), -+, (Bn, ttn) correspond to different
models of perturbations to the time evolution of the satellites.

H.1 The operator —a is the infintesimal generator of a C, (contraction)
semigroup of operators on a separable Hilbert space H over R!

H.2a For each p=1, -+, n, up is a measure defined on B([0, +00)), the
Borel class of [0,00).
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H.2b The associated (necessarily positive} total variation measures | pyp
| satisfy
[ p | ([0, T} < o0 for every T'> 0 and p=1, 2, ---, n.

H.2c The pp’s are continuous measures, that is uy({t})=0, for every i
>0

H.3a For each p=1, ---, n, Bp:[0, 00) — L(H) is assumed to have the
property that 3,(E)~" is in the Borel class (or Borel o-algebra)
B([0, o)) of [0, o0) for every strong operator open subset E of
L{H).

H.3b We reguire for each p=1, ---, n that fUT||ﬁp(8)|||up|(ds) < oo for
every T > 0.

H.3c For each p it is assumed that the family of operators {By(s) : 0 <
s < oo} is a commuting family in L{H).

* Note that it is NOT assumed that for p # ¢ that any B3, com-

mutes with By nor that any B, commutes with the semigroup T(t)
= exp(—at).

The fact that the potential energies (Vigy, Viga) in Eq. (3) are in
L*®(R?) provides great simplification — help that is needed to com-
plete this work. This allows one to rigorously prove the existence of
the integrals and to justify the interchange of limit processes. Lapidus
[10] and Johnson and Lapidus [15] did this for a 1-D example and then
we mention some of the complications which are required by the GPS
geometry. There is a nice twist to this problem, and that is that the
Feynman functional is guiding us in the establishment of a mathemati-
cally rigorous, algorithm to numerically calculate the values of physical
effects which model the residuals of real data. This will then allow us
to correct for the failure of the random parts of the system to attain the
applicability of the central limit theorem! The simple proof [10,16] allow
us to point out the exact connection of the deterministic ODE system
to the statistical aspects.

Let H = Hy+ V, V € L*(R?*) and consider the Feynman-Kac for-
mula for any peL?(R?) and ¢ Lebesque measurable a.e. in R,

(e HH V) (g)

[, e {= [ Vists) + s} olott) + ehama(e)

® =X [ Vi) +dds} olatt) + ama(o)

1
m=0 e C[O,t]
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where dm,, is the Wiener measure on the Wiener space C[0,t] = {z =
z(s) : [0,4] - R, z(0) = 0}, and where z is a continuous path in the
Wiener space. Observe that e~ ig hidden inside the Wiener measure
dm.,(x) on the right hand side of the two equality signs. Furthermore,
the replacement of the polygonal paths in Cameron-Storvick [5] by the
Fourier coefficients in Kallianpur, et al [18] is a very favorable devel-
opment for the inverse problems of linear operators in the GPS. They
showed that the RKHS is closely related to the spectrum of the opera-
tor H. Stated another way, with complete, noise free data, the potential
energy function V can be uniquely reconstructed from the spectrum,
o(H).

In Eq. (8), the m = 0 term is the free system, V(r) =0,

Iy = {lexp(-tHo)lo}E)
(9) = ]é o) + Eama (o).

it

The first order perturbation, m =1 in Eq. (7) is

L. = / f 2(s1) + E)ds1]p(@(t) + E)dmu(z)
C[Ot]

w0 = - /0 { fc e (sl)+f>so(x(t)+5>dmw(m>}dsl,

where the interchange of integration in the last equality of Eq. (10) is
allowed by the Fubini theorem. The time ordering of the orbit paths
and radio signal propagation occurs here because of causality, and is
easy at first order. This is because the interval 0 < s < t has zero
Lebesque measure when s € [0,t] for s = 0 or s = ¢ for the continuous
measure, and it is only necessary to consider 0 <s <t. Using the change
of variables vo=ug+€ and v; = u; + &, I becomes, using the exp (—tHop)
semigroup properties,
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h =fot{(<z@—2$im)mx

2 a2
X f V(uy + &)p{ug + £lexp [___}E — M} duodul}d51
R2 Sl

957 2(t—s1)
[{(eme=) -

— o2 (vr — w)2
(11) x ]R? V (v1)e(vo) exp [w (8 2511) — (Q(It 41;01)) } dvgdvl}dsl.

Writing the inside integral as an iterated integral yields

t 1 1/2 (E )2/251
I = — —mn -V
. (ml) K (V) %
% 1 1/2f e—(U]_UD)Q/z(t_El) ( )d'v d d
———_%r(t—sl) 2, P \tp)avy | ath §1

12) = fo fexp(—s1Ho)(—V)expl(t — 1) Ho () (€) s

The m = 2 order term is exhibited although it is not needed in our work
at this time. The time ordering is nontrivial in this order

1 t , 2
L =g o fo Vl[sv(s)+£]ds] (z(t) + €)dma,(z)
1 t S0 ,
=3 oy UO fo Vila(s1) + )V (z(s2) + )dsds

13+ /0 t / " Vi (@51 + OV ((s2) + E)dsads:] (a(t) + E)dmu(z),

where the two integrals over dsijdse and dsads; are due to the time
ordering on [0,#]?. They are also equal if one is relabeled. Changing
variables to vy = ug + £, v1 = u; + £ and writing an iterated integral
over R? gives

5 Z/o fﬂ fexp(— sy Ho)(— Vi)exp(—(s2 — s1)Ho)(~ V)
(14) exp(—(t — 82) Ho) ()(€) ds1 dss.
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The evaluation of Eqs. (12), (13) with V] = Vg1 + Voo is not easy.
If a satellite my, the moon wmg, the earth m., and the sun m; are
considered, then Eq. (3} includes six pairs of masses m;m; and six
separation distances r;; = | — 7;| four angular three-vector veloci-
ties, wi{x= $],0,e,s). The direction of wf is along the normal to the
satellite plane {there are four such planes) and 1, Wy are the angular
velocities of the moon and sun. None of these vectors are collinear nor
orthogonal. The origin is at the enter of mass of these bodies. Special rel-
ativistic transformations add velocity terms of order Vi /e{oc= 5,0, ¢, 5)
to many of these terms and general relativity adds more. The spatial
integrations are only over non-Hy, say 7 coordinates and the solutions
are known to be almost-periodic [43-43].

In this framework, radiation reaction gravitational radiation can be
studied by adding suitable terms to Vg1 + Vige. Since the hypotheses are
valid even for the paramaterized post Newtonian interaction assumed
in Eq. (3), V{ = Vg1 + Vg2 = ¢ in the equations of motion. Then the
perturbation vector g is T = 27 /w periodic and the perturbed orbits
are almost-periodic.

4. Conclusions

A class of models for the Global Positioning System including earth
and its satellites in the gravitational field of the sun has been presented.
Firstly, the perturbation series converges and the sum of these series is
unique. Secondly, the formulation based upon the Feynman functional
is versatile in the sense that next order of effects such as gravitational
waves and radiation reactions can be calculated in this approximation.
This provides a way to model out more of the crrors from the GPS and
to thereby understand it better.
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