References
- Functional equations in several variables C. J. Aczel;J. Dhombres
- Internat. J. Math. Math. Sci. v.18 On a general Hyers-Ulam-stability result C. Borelli;G. L. Forti
- Aequationes Math. v.27 Remarks on the stability of functional equations P. W. Cholewa
- Abh. Math. Sem. Univ. Hamburg. v.62 On the stability of the quadratic mapping in normed spaces S. Czerwik
- Proc. Nat. Acad. Sci. v.27 On the stability of the linear functional equation D. H. Hyers
- J. Math. Anal. Appl. v.239 On Hyers-Ulam-Rassias stability of the pexider equation K. W. Jun;D. S. Shin;B. D. Kim
- J. Math. Anal. Appl. v.222 On the Hyers-Ulam stability of the functional equations that have the quadratic property S.-M. Jung
- Abh. Math. Sem. Univ. Hamburg v.69 On the stability of the quadratic functional equation on bounded domains S.-M. Jung;B. Kim
- Results Math. v.27 Quadratic functional equation and inner product spaces Pl. Kannappan
- Proc. Amer. Math. Soc. v.128 On the stability of approximately additive mappings Y. H. Lee;K. W. Jun
- J. Math. Anal. Appl. v.238 A generalization of the Hyers-Ulam-Rassias Stability of Jensen's equation
- Chinese J. Math. v.20 On the stability of the Euler-Lagrange functional equation J. M. Rassias
- Proc. Amer. Math. Soc. v.72 On the stability of the linear mapping in Banach spaces Th. M. Rassias
- Studia Univ. "Babes-Bolyai" to appear. On the stability of the quadratic functional equation and its applications
- Rend. Sem. Mat. Fis. v.53 Proprieta locali e approssimazione di operatori F. Skof
- Rend. Chap. VI Wiley Problems in Modern Mathematics S. M. Ulam