ON THE GENERALIZED HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION

  • Bae, Jae-Hyeong (DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY) ;
  • Jun, Kil-Woung (DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY)
  • Published : 2001.05.01

Abstract

In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of a quadratic function equation f(x+y+z)+f(x-y)+f(y-z)+f(z-x)=3f(x)+3f(y)+3f(z) and prove the Hyers-Ulam-Rassias stability of the equation on bounded domain.

Keywords

References

  1. Functional equations in several variables C. J. Aczel;J. Dhombres
  2. Internat. J. Math. Math. Sci. v.18 On a general Hyers-Ulam-stability result C. Borelli;G. L. Forti
  3. Aequationes Math. v.27 Remarks on the stability of functional equations P. W. Cholewa
  4. Abh. Math. Sem. Univ. Hamburg. v.62 On the stability of the quadratic mapping in normed spaces S. Czerwik
  5. Proc. Nat. Acad. Sci. v.27 On the stability of the linear functional equation D. H. Hyers
  6. J. Math. Anal. Appl. v.239 On Hyers-Ulam-Rassias stability of the pexider equation K. W. Jun;D. S. Shin;B. D. Kim
  7. J. Math. Anal. Appl. v.222 On the Hyers-Ulam stability of the functional equations that have the quadratic property S.-M. Jung
  8. Abh. Math. Sem. Univ. Hamburg v.69 On the stability of the quadratic functional equation on bounded domains S.-M. Jung;B. Kim
  9. Results Math. v.27 Quadratic functional equation and inner product spaces Pl. Kannappan
  10. Proc. Amer. Math. Soc. v.128 On the stability of approximately additive mappings Y. H. Lee;K. W. Jun
  11. J. Math. Anal. Appl. v.238 A generalization of the Hyers-Ulam-Rassias Stability of Jensen's equation
  12. Chinese J. Math. v.20 On the stability of the Euler-Lagrange functional equation J. M. Rassias
  13. Proc. Amer. Math. Soc. v.72 On the stability of the linear mapping in Banach spaces Th. M. Rassias
  14. Studia Univ. "Babes-Bolyai" to appear. On the stability of the quadratic functional equation and its applications
  15. Rend. Sem. Mat. Fis. v.53 Proprieta locali e approssimazione di operatori F. Skof
  16. Rend. Chap. VI Wiley Problems in Modern Mathematics S. M. Ulam