Abstract
Variable temperature anemometer(VTA) has greater sensitivity than a conventional constant temperature anemometer(CTA). In order to design a reliable VTA system, however, an elaborate photoconductive cell stabilizing circuit which plays a key role in setting wire-overheat ratio should be firstly developed. In this study, a stabilizing circuit which adopts proportional-integral analog controller was proposed and thoroughly tested for its accuracy and reproducibility. In contrast to the available circuit suggested by Takagi, the present circuit has characteristic that the resistance of a photoconductive cell increases with the increase of input voltage, which makes the current circuit very suitable for the design of VTA. Finally, VTA adopting stabilizing circuit was made and the enhanced sensitivity of the VTA was validated experimentally by comparing the calibration curves of VTA and CTA.