벡터 오차 확산법을 이용한 색보정 기반의 칼라 중간조 처리법

Color halftoning based on color correction using vector error diffusion

  • 최원희 (경북대학교 전자전기공학부) ;
  • 이철희 (경운대학교 컴퓨터공학과) ;
  • 김정엽 (경북대학교 전자전기공학부) ;
  • 김희수 (경북대학교 전자전기공학부) ;
  • 하영호 (경북대학교 전자전기공학부)
  • Choi, Woen-Hee (School of Electronic and Electrical Engineering, kyungpook National University) ;
  • Lee, Cheol-Hee (Computer Eng, Kyungwoon University) ;
  • Kim, Jeong-Yeop (School of Electronic and Electrical Engineering, kyungpook National University) ;
  • Kim, Hee-Soo (School of Electronic and Electrical Engineering, kyungpook National University) ;
  • Ha, Yeong-Ho (School of Electronic and Electrical Engineering, kyungpook National University)
  • 발행 : 2000.09.25

초록

본 논문에서는 벡터오차 확산법을 이용한 색수정 방법으로 장치간 색재현시 필연적으로 발생하는 색차를 줄이는 칼라 하프토닝(halftoning)법을 제안하였다 각 장치의 출력색을 추정하기 위하여 신경망을 이용하였으며 장치 특성화 과정의 평균 추정 오차를 정의하여 이를 색수정의 임계치로 정의하였다 즉 화소 단위로 색차를 비교하여 최대 허용 색차(임계치)보다 클 경우 그 화소의 프린팅을 위한 이진 도트 집합은 벡터 오차 확산법을 이용해 재배열된다 제안된 방법은 선택적으로 벡터 오차 확산법을 적용함으로써 기존의 벡더 오차 확산법이 갖는 스미어 현상(smear effect)을 줄일 수 있으며 색수정을 통하여 필연적으로 발생하는 장치간 색차를 줄일 수 있었다.

This paper proposes a new color halftorning method using color correction by vector error diffusion to reduce color difference, necessarily appears on cross-media color reproduction In order to predict output colors on each device, a neural system IS applied and mean prediction errors in device characterization for monitor and printer are defined to calculate the thresholds for color correction Thus, color difference between monitor and printer is compared per each pixel If color difference is larger than the predetermined mean prediction errors, the halftoned dots to the current pixel are rearranged by vector error diffusion The proposed method can reduce the smear artifact by selective vector error diffusion and decrease color difference on cross- media color reproduction by color correction.

키워드

참고문헌

  1. Robert Ulicheney, Digital Halftoning, The MIT Press, 1993
  2. Keith T. Knox, 'Evolution of Error Diffusion,' SPIE Conf on Device- Independent Color Imaging, vol 3648, pp 448-458, Jan 1999
  3. Floyd, R and Steinberg, L, 'An adaptive algorithm for spatial gray scale,' SID 1975 Symp Dig Tech. Papers, pp 36-37, 1975
  4. T Mitsa and K. J Parker, 'Digital Halftoning Technique Using a Blue-Noise Mask,' J Opt Soc Am. A vol 9, no 11, pp 1920-1929, Nov 1992
  5. Meng Yao and Kevin J. Parker, 'Modified approach to the construction of a blue noise mask,' Journal of Electronic Imaging, vol 3, no. 1, pp. 92-97, Jan 1994 https://doi.org/10.1117/12.165114
  6. Hideaki Haneish, Toshiaki Suzuki, Nobukatsu Shimoyama, and Yoichi Miyake, 'Color digital halftoning taking colorimetric color reproduction into account,' Journal of Electronic Imaging, vol 5, no 1, pp. 97-106, Jan 1996 https://doi.org/10.1117/12.227441
  7. Masahiro Kouzaki, Tetsuya Itoh, Takayuki Kawaguchi, Norimichi Tsumura, Hideaki Haneishi, and Yoichi Miyake, 'Evaluation of Digital Halftone Image by Vector Error Diffusion,' SPIE Conf on Device-Independent Color Imaging, vol. 3648, pp. 470-479, Jan. 1999 https://doi.org/10.1117/12.334591
  8. Mark D. Fairchild, Color Appearance Models, Addison Wesley, 1998
  9. Richard P. Lippmann, 'An introduction to computing with neutral nets,' IEEE ASSP MAGAZINE, pp. 4-22, April 1987
  10. Yoh-Han Pao, Adaptive pattern recognition and neural networks, Addison Wesley, pp 120-129, 1989
  11. Albert D. Helfrick and William D. Cooper, Modem electronic instrumentation and measurement techniques, Prentice-Hall, Inc, 1990
  12. Jack L Goldberg, Matrix theory with applications, MacGraw-Hill, Inc, 1991