주축의 연속적 분할을 통한 고속 벡터 양자화 코드북 설계

Fast VQ Codebook Design by Sucessively Bisectioning of Principle Axis

  • 강대성 (동아대학교 전기전자컴퓨터공학부) ;
  • 서석배 (동아대학교 전자공학과) ;
  • 김대진 (포항공과대학교 컴퓨터공학과)
  • 발행 : 2000.04.15

초록

본 논문에서는 주성분 해석 기법에 기반한 새로운 벡터 양자화 코드북 설계 방법을 제안한다. 주성분 해석 알고리즘은 입력 영상벡터를 더 작은 차원의 특징 벡터로 변환시키는데 사용되며, 변환된 영역에서 특징 벡터의 군집을 최적으로 결정된 분할 초평면을 이용하여 두 군집으로 분할하는 과정을 반복 함으로써 코드북을 생성한다. 본 논문에서는 연산 시간이 오래 걸리는 최적 분할 초평면 탐색을 (1) 분할 초평면은 특징 벡터의 주축에 수직이며, (2) 좌우측 부군집의 오차의 균형점과 일치하며, (3) 좌우측 부군집의 오차를 점진적으로 조정함으로서 연산 수행 시간을 크게 단축시켰다. 제안한 주축 연속 분할은 분할전후의 오차의 감축이 가장 큰 군집에 대해, 전체 군집의 오차가 설정한 수준보다 작을 때까지 연속적으로 수행된다. 실험 결과 제안한 주성분 해석 기반 벡터 양자화 방법은 SOFM을 이용한 방법보다 수행시간이 빠르며 K-mean 알고리즘을 이용한 방법보다 복원 성능이 뛰어남을 볼 수 있다.

This paper proposes a new codebook generation method, called a PCA-Based VQ, that incorporates the PCA (Principal Component Analysis) technique into VQ (Vector Quantization) codebook design. The PCA technique reduces the data dimensions by transforming input image vectors into the feature vectors. The cluster of feature vectors in the transformed domain is bisectioned into two subclusters by an optimally chosen partitioning hyperplane. We expedite the searching of the optimal partitioning hyperplane that is the most time consuming process by considering that (1) the optimal partitioning hyperplane is perpendicular to the first principal axis of the feature vectors, (2) it is located on the equilibrium point of the left and right cluster's distortions, and (3) the left and right cluster's distortions can be adjusted incrementally. This principal axis bisectioning is successively performed on the cluster whose difference of distortion between before and after bisection is the maximum among the existing clusters until the total distortion of clusters becomes as small as the desired level. Simulation results show that the proposed PCA-based VQ method is promising because its reconstruction performance is as good as that of the SOFM (Self-Organizing Feature Maps) method and its codebook generation is as fast as that of the K-means method.

키워드

참고문헌

  1. N. M. Nasrabadi and R. A. King, 'Image coding using vector quantization: A Review,' IEEE Transactions on Communications, vol. 36, no. 8, pp. 604-619, August 1988 https://doi.org/10.1109/26.3776
  2. Y. Linde, A. Buzo, and R. M. Gary, 'An algorithm for vector quantizer design,' IEEE Transaction on Communication, vol. 28, no. 1, pp. 84-95, 1980 https://doi.org/10.1109/TCOM.1980.1094577
  3. T. Kohonen, Self-Organization and Associative Memory, 3rd ed., Berlin: Springer-Verlag, 1989
  4. Y. K. Kim and J. B. Ra, 'Adaptive learning method in self-organizing map for edge preserving vector quantization,' IEEE Transactions on Neural Networks, vol. 6, no. 1, pp. 278-286, 1995 https://doi.org/10.1109/72.363425
  5. Doo-Il Choi and Sang-Hui park, 'Self-creating and organizing neural networks,' IEEE Transactions on Neural Networks, vol. 5, no. 4, pp. 561-575, 1994 https://doi.org/10.1109/72.298226
  6. J. Mao and A. K. Jain, 'A Self-organizing network for hyperellipsoidal clustring (HEC),' IEEE Transactions on Neural Networks, vol. 7, no. 1, pp. 16-29, 1996 https://doi.org/10.1109/72.478389
  7. Chok-Ki Ma and Chi-Kit Chan, 'Maximum descent method for image vector quantization,' Electronic Letters, vol 27, pp. 1772-1773, 1991 https://doi.org/10.1049/el:19911102
  8. Chok-Ki Ma and Chi-Kit Ma, 'A fast method of designing better codebooks for image vector quantization,' IEEE Transactions on Communications, vol. 42, no. 2/3/4, pp. 237-242, 1994 https://doi.org/10.1109/TCOMM.1994.577022
  9. H. Hotelling, 'Analysis of a complex of statistical variables into principal components,' Journal of Educational Psychology, vol. 24, pp. 498-520, 1933 https://doi.org/10.1037/h0070888
  10. K.I. Diamantaras and S.Y. Kung, Principal Component Neural Networks : Theory and Applications, John Wiley & Sons Inc., 1996
  11. R. Duda and P. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons Inc., 1973
  12. Daijin Kim and In-Hyun Cho, 'An Accurate and Cost-Effective Fuzzy Logic Controller with a Fast Searching of Moment Equilibrium Point,' IEEE Trans. on Industrial Electronics, vol. 46, no. 2, pp. 1-14, April 1999 https://doi.org/10.1109/41.753785
  13. Daijin Kim and Sunha Ahn, 'An Optimal MS-GS VQ Codebook Design for Wireless Image Communication Using Genetic Algorithms,' IEEE Trans. on Evolutionary Computation, vol. 3, no. 1, pp. 1-18, March 1999 https://doi.org/10.1109/4235.752919