CAD/CAM Integration based on Geometric Reasoning and Search Algorithms

기하 추론 및 탐색 알고리즘에 기반한 CAD/CAM 통합

  • 한정현 (성균관대학교 전기전자및컴퓨터공학부) ;
  • 한인호 (성균관대학교 전기전자및컴퓨터공학부)
  • Published : 2000.01.15

Abstract

Computer Aided Process Planning (CAPP) plays a key role by linking CAD and CAM. Given CAD data of a part, CAPP has to recognize manufacturing features of the part. Despite the long history of research on feature recognition, its research results have rarely been transferred into industry. One of the reasons lies in the separation of feature recognition and process planning. This paper proposes to integrate the two activities through AI techniques, and presents efforts for manufacturable feature recognition, setup minimization, feature dependency construction, and generation of an optimal machining sequence.

자동공정계획은 CAD 모델을 자동적으로 해석하여 CAM을 구동시키는 것을 목표로 하는데, 이를 위해서는 우선 CAD 모델로부터 특징형상을 인식하여야 한다. 특징형상 인식에 관한 연구는 근 20년간의 역사를 가지고 있지만, 그 연구 성과는 실용화되지 못하고 있다. 그 이유 중 하나는, 특징형상 인식과 자동공정계획 연구가 분리되어 진행되어왔기 때문이다. 본 연구에서는 인공지능 기법을 토대로 이 두 분야를 통합하여, 제조가능한 특징형상을 인식하고, 셋업을 최소화하며, 특징형상 간의 의존 관계를 설정하고, 최적의 가공 순서를 결정하였다.

Keywords

References

  1. D. Heckerman, Probabilistic Interpretation for MYCIN's Certainty Factors, In Kanal and Lemmer, editors, Uncertainty in AI, pp. 167-196, Amsterdam: North-Holland, 1986
  2. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill, 1990
  3. J. Dong and S. Vijayan, 'Manufacturing Feature Determination and Extraction ? Part1: Optimal Volume Segmentation,' Computer Aided Design, June 1997, Vol. 29, No. 6, pp. 427-440 https://doi.org/10.1016/S0010-4485(96)00072-3
  4. J. Dong and S. Vijayan, 'Manufacturing Feature Determination and Extraction ? Part2: A Heuristic Approach,' Computer Aided Design, July 1997, Vol. 29, No. 7, pp. 475-484 https://doi.org/10.1016/S0010-4485(96)00073-5
  5. D. M. Gains and C. C. Hayes, A Constraint-based Algorithm for Reasoning about the Shape Producing Capabilities of Cutting Tools in Machined Parts, Proc. DFM97, DETC97/DFM-4322, 1997
  6. D. M. Gains, F. Castano and C. C. Hayes, MEDIATOR: A Resource Adaptive Feature Recognizer that Interwines Feature Extraction and Manufacturing Analysis, Accepted in ASME Journal of Mechanical Design
  7. S. K. Gupta. Automated Manufacturability Analysis of Machined Parts. PhD thesis, University of Maryland, 1994
  8. JungHyun Han, 3D Geometric Reasoning Algorithms for Feature Recognition, Ph.D. Dissertation, Computer Science Department, USC, 1996
  9. JungHyun Han, 'On Multiple Interpretations,' 4th ACM SIGGRAPH Symposium on Solid Modeling and Applications, Atlanta, Georgia, May 14-16, 1997, pp. 311-321 https://doi.org/10.1145/267734.267807
  10. JungHyun Han and Aristides Requicha, 'Integration of Feature. Based Design and Feature Recognition,' Computer Aided Design, May 1997, Vol. 29, No. 5, pp.393-403 https://doi.org/10.1016/S0010-4485(96)00079-6
  11. J. Han and A. A. G. Requicha, 'Feature Recognition from CAD Models,' IEEE Computer Graphics and Applications, March/April 1998, Vol. 18, No. 2, pp. 80-94 https://doi.org/10.1109/38.656791
  12. P. G. Maropoulos, Review of Research in Tooling Technology, Process Modeling and Process Planning, Part II: Process Planning, Computer Integrated manufacturing Systems, 8(1) pp. 13-20, 1995 https://doi.org/10.1016/0951-5240(95)92809-9
  13. N. J. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann, 1998
  14. J. J. Shah, Y. Shen, and A. Shirur. Determination of machining volumes from extensible sets of design features. In J. J. Shah, M. M. ntyl , and D. S. Nau, editors, Advances in Feature Based Manufacturing, pages 129-157. Elsevier Science B. V., Amsterdam, The Netherlands, 1994
  15. Y. J. Tseng and S. B. Joshi. Recognizing Multiple Interpretations of Interacting Machining Features. Computer Aided Design 26(9):667-688, 1994 https://doi.org/10.1016/0010-4485(94)90018-3
  16. J. H. Vandenbrande and A. A. G. Requicha. Spatial Reasoning for the Automatic Recognition of Machinable Features in Solid Models. IEEE Trans. Pattern Analysis and. Machine Intelligence, 15(12):1-17, 1993 https://doi.org/10.1109/34.250845