Characterization of Sulfur Oxidation by an Autotrophic Sulfur Oxidizer, Thiobacillus sp. ASWW-2

  • Lee Eun Yaung (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Ryu Hee Wook (Department of Chemical and Environmental Engineering, Soong Sil University)
  • Published : 2000.01.01

Abstract

An autotrophic sulfur oxidizer, Thiobacillus sp. ASWW-2, was isolated from activated sludge, and its sulfur oxidation activity was characterized. Thiobacillus sp. ASWW-2 could oxidize elemental sulfur on the broad range from pH 2 to 8. When 5-50 g/L of elemental sulfur was supplemented as a substrate, the growth and sulfur oxidation activity of Thiobacillus sp. ASWW-2 was not inhibited. The specific sulfur oxidation rate of strain ASWW-2 decreased gradually until sulfate was accumulated in medium up to 10 g/L. In the range of sulfate concentration from 10 g/L to 50 g/L, the sulfur oxidation rate could keep over $2.0g-S/g-DCW{\cdot}d$. It indicated that Thiobacillus sp. ASWW-2 has tolerance to high concentration of sulfate.

Keywords

References

  1. Odour Prevention and Control of Organic Sludge and Livestock Farming Odour problems related to waste water and sludge treatment. In: V. C. Neilsen, J. H. Voorgurg, and P. L. Hermite, (Eds.) Eikum, A. S.;R. Storhang
  2. J. Air Waste Magm. Assoc. v.44 Biofiltration control of hydrogen sulfide 1. Design and operational parameters. Yang, Y.;E. R. Allen
  3. Ann. Occup. Hyg. v.39 Epidemiological study of eye irritation by hydrogen sulphide and/or carbon disulphid exposure in viscose rayon workers. Vanhoorne, M.;A. Rouck;D. de. Bacquer
  4. Wat. Sci. Tech. v.23 Microbial corrosion of concrete sewer pipes, H2S production from sediments and determination of corrosion rate. Mori, T.;M. Koga;Y. Hikosaka;T. Nonaka;F. Mishina;Y. Sakai,;J. Koizumi
  5. Wat. Sci. Tech. v.31 A newly isolated fungus participates in the corrosion of concrete sewer pipes. Cho, K. S.;T. Mori
  6. Biological Degradation of Wastes Methods for the biological treatment of exhaust gases in biological degradation of waste. In: A. M. Martin (ed.) Shoda, M.
  7. J. Ferment. Bioeng. v.71 Removal characteristics of hydrogen sulfide and methanethiol by Thiobacillus sp. isolated from peat in biological deodorization. Cho, K. S.;L. Zhang;M. Hirai;M. Shoda
  8. J. Water Pollut. Control Fed. v.53 Compost filters for H2S removal from anaerobic digestion and rendering exhausts. Rands, M. B.;D. E.;Cooper;C. P. Woo;G. C. Fletcher;K. A. Rolfe
  9. J. Ferment. Bioeng. v.71 Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide by Thiobacillus thioparus DW44 isolated from peat biofilter. Cho, K. S.;M. Hirai;M. Shoda
  10. J. Ferment. Bioeng. v.73 Enhanced removal efficiency of malodorous gases in a pilot-scale peat biofilter inoculate with Thiobacillus thioparus DW44. Cho, K. S.;M. Hirai;M. Shoda.
  11. Biotechnol Bioeng. v.29 Oxidation of hydrogen sulfide by Thiobacillus denitrificans : desulfurization of natural gas. Sublette, K. L.;N. D. Sylvester
  12. Appl. Environ. Microbiol. v.55 Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m. Kanagawa, T.;E. Mikami
  13. J. Environ. Sci. Health. v.A32 Removal characteristics of H2S by Thiobacillus novellus CH13 biofilter in autotrophic and mixotrophic environments. Chung, Y. C.;C. Huang;C. F. Li
  14. Curr. Microbiol. v.4 Isolation of Thiotrix in pure culture and observation of a filamentous epiphyte on Thiotrix. Larkin, J. M.
  15. Arch. Microbiol. v.136 Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Nelson, D. C.;H. W. Jannasch
  16. J. Ferment. Bioeng. v.72 Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hyphomicrobium sp. 155 isolated from peat biofilter. Zhang, L.;M. Hirai;M. Shoda
  17. Arch. Microbiol. v.131 Cytochromes of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum. Purification, characterization and sulfur metabolism. Steinmetz, M. A.;U. Fisher
  18. Biochim. Biophys. Acta v.680 The role of a cytochrome c-552-cytochrome c complex in the oxidation sulfide in Chromatium vinosum. Gray, G. O.;J. G. Knaff
  19. Arch. Microbiol. v.135 Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c-551. Then, J.;H. G. Truper
  20. Arch. Microbiol. v.145 Noncyclic electron transport in chromatophores from photolithotrophically grown Rhodobacter sulfidophilis. Brume, D. C.;H. G. Truper
  21. Biotechnol. Prog. v.12 Biodegradation of hydrogen sulfide by a laboratory-scale immobilized Pseudomonas putida CH11 biofilter. Chung, Y. C.;C. Huang;C. P. Tseng
  22. Appl. Environ. Microbiol. v.58 Degradation of hydrogen sulfide by Xanthomonas sp. strain DY44 isolated from peat. Cho, K. S.;M. Hirai;M. Shoda.
  23. Microbiol. Sci. v.2 Physiology of the thiobacilli: elucidating the sulphur oxidation pathway. Kelly, D. P.
  24. Bergey’s Manual of Systematic Bacteriology v.3 Colorless sulfur bacteria. In: J. T. Staley, M. P. Bryant, N. Pfenning, and J. G. Holt, (eds.) Kuenen, J. G.
  25. J. Gen. Microbiol. v.128 Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. Katayama-F., Y.;N. Tsuzaki;H. Kuraishi
  26. J. Gen. Appl. Microbiol. v.25 Some properties of cell sulfur adhesion in Thiobacillus thiooxidans. Takakuwa, S.;T. Fujimori;H. Iwasaki
  27. Appl. Environ. Microbiol. v.63 Cell hydrophobicity and sulfur adhesion of Thiobacillus thiooxidans. Takeuchi, T. L.;I. Suzuki
  28. App. Environ. Microb. v.61 Growth kinetics of Thiobacillus thiooxidans on the surface of elemental sulfur. Konishi, Y.;S. Asai;N. Yoshida
  29. Process Biochem. v.32 Bacterial attachment : its role in bioleaching processes. Porro, S.;S. Ramirez;C. Reche;G. Curutchet;A. Alonso-Romanowski, E. Donati