다 입력 이산 비선형 시스템의 선형화

Linearization of the Multi-input Discrete-time Nonlinear Systems

  • 김재현 (中央大學敎 電子電氣工學部) ;
  • 노동휘 (中央大學敎 電子電氣工學部) ;
  • 박순형 (中央大學敎 電子電氣工學部) ;
  • 김용민 (中央大學敎 電子電氣工學部) ;
  • 이홍기 (中央大學敎 電子電氣工學部)
  • Kim, Jae-Hyun (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Roh, Dong-Hwi (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Park, Soon-Hyoung (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Yong-Min (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Lee, Hong-Gi (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 발행 : 2000.01.01

초록

비선형 시스템의 선형화 문제는 좌표변환만에 의한 것과 좌표변환과 상태 궤환에 의한 것 등 크게 두 가지로 나눌 수 있다. 본 논문에서는 다 입력 이산 비선형 시스템에 대하여 이 두 가지 문제에 대한 필요충분 조건을 얻는다. 또한, 선형화하는 좌표변환과 궤환을 구하는 방법을 증명과정에서 제시한다.

In order to linearize the nonlinear systems, two different methods(i.e. state coordinate change and feedback) are usually used. In this paper, we consider the multi-input discrete-time nonlinear systems and obtain the necessary and sufficient conditions for both the linearization problem by state-coordinate change and the feedback linearization problem. The way of finding state coordinate change and state feedback which linearize the given system is also given in the proof.

키워드

참고문헌

  1. B. Jakubczyk and W. Respondek 'On Linearization of Control systems,' Bulletin de l'Academie Polonaise des Sciences. Serie des Sciences Math, vol. 28, pp. 517-522, 1980
  2. R. Su. 'On the linear equivalents of nonlinear systems,' System & Control Letters, vol. 21, no. 1, pp. 20-24, July 1982
  3. L. R. Hunt, R. Su, and G. Meyer, 'Design for multi-input nonlinear system,' in Differential Geometric Control Theory, edited by R. W. Brockett, et al., Brikhuser, Boston. pp. 268-293, 1983
  4. H. G. Lee, A. Arapostathis, and S. I. Marcus, 'Linearization of discrete-time systems,' Int. J. Contr., vol. 45, no. 5, pp. 1803-1822, 1987 https://doi.org/10.1080/00207178708933847
  5. J. W. Grizzle, 'Feedback linearization of discrete-time systems,' Lecture Notes In Control and Information Science, vol. 83 Springer-Verlag New York Inc., p. 273, 1985
  6. H. G. Lee and S. I. Marcus, 'Approximate and local linearizability of non-linear discrete-time systems,' Int. J. Contr., vol. 44. no. 4, pp. 1103-1124, 1986 https://doi.org/10.1080/00207178608933653
  7. B. Jakubczyk, 'Feedback Linearization of discrete time systems,' Systems & Control Letters, vol. 9, pp. 411-416, 1987 https://doi.org/10.1016/0167-6911(87)90070-3
  8. A. Isidori, Nonlinear Control Systems, 2nd ed., Springer-Verlag, 1989
  9. H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag New York Inc., 1990
  10. W. M. Boothby, An Introduction to Differentiable Manifolds an Riemannian Geometry, Academic Press, 1975
  11. 김재현, '다 입력 이산 비선형 시스템의 선형화에 관한 연구', 중앙대학교 제어계측공학과 석사학위논문, 1999
  12. L. R. Hunt, M. Luksic and R. Su, 'Exact linearization of input-output systems,' Int. J. Contr., vol. 43, no. 1, pp. 247-255, 1986 https://doi.org/10.1080/00207178608933461
  13. D. Cheng, A. Isidori, W. Respondek, and T. J. Tarn, 'Exact linearization of nonlinear systems with outputs,' Math Syst. Theory, vol. 21, pp. 63-83, 1988 https://doi.org/10.1007/BF02088007