Nonlinear $H_2/H_\infty/LTR$ Control of the Parallel Flexible Inverted Pendulum Connected by a Spring

스프링 연결 병렬형 탄성 역진자의 비선형 $H_2/H_\infty/LTR$ 제어

  • 한성익 (순천제일대학 기계전기제어과)
  • Published : 2000.05.01

Abstract

In this paper, a nonlinear $H_2/H_\infty/LTR$ control for the flexible inverted pendulum of a parallel type with Coulomb friction is presented. The dynamic equation for this system is derived by the Hamilton's principle and assumed-mode method. This hard nonlinear system can be modeled by a the quasi-linear state space model using the REF method. It is shown that the $H_2/H_\infty$ control can be applied to the nonlinear controller design of the system having Coulomb frictions if the proper LTR conditions are satisfied. In order to present the usefulness of the suggested control method, the nonlinear $H_2/H_\infty/LTR$ controller is designed to control the Position of the end point of the flexible inverted pendulum that has Coulomb frictions present in actuator parts. The results are given via computer simulations.

Keywords

References

  1. S. Centinkunt, W. J. Book, 'Symbolic modeling of flexible manipulators,' IEEE Int. Conf. on R. & A., pp. 2074-2080, 1987
  2. S. K. Biswas, and R. D. Klafter, 'Dynamic modeling and optimal control of flexible robotic manipulators,' IEEE Int. Conf. on R. & A., pp. 15-20, 1988 https://doi.org/10.1109/ROBOT.1988.12017
  3. G. B. Yang, M. Donath, 'Dynamic model of a one-link robot manipulator with both structural and joint flexibility,' IEEE Int. Conf. on R. & A., pp. 476-481, 1988 https://doi.org/10.1109/ROBOT.1988.12097
  4. Y. Sakawa, F. Matsno, Y. Ohsawa, M. Kiyohara, and T. Abe, 'Modeling and vibration control of a flexible manipulator with three axis by using accelerometers,' Advanced Robotics, vol. 4, no. 2, pp. 119-137, 1990
  5. S. Centinkunt and W. J. Book, 'Performance limitations of joint variable-feedback controller due to manipulator structural flexibility,' IEEE Trans. On R. & A., vol. 6, pp. 2, 1990 https://doi.org/10.1109/70.54737
  6. K. G. Elthohamy, and C. Y. Kuo, 'Nonlinear optimal a triple link inverted pendulum with single control input,' Int J. Contr., vol. 50, no. 2, pp. 239-256, 1998 https://doi.org/10.1080/002071798222811
  7. C. W. Anderson, 'Learning to control an inverted pendulum using neural networks,' IEEE Contr. Sys. Magazine, vol. 9, no. 3, pp. 31-37, 1989 https://doi.org/10.1109/37.24809
  8. G. W. Vander Linden, and P. F. Lambrechts, '$H_{\infty}$ control of an experimental inverted pendulum with dry friction,' Proc. CDC, pp. 123-128, 1992
  9. K. Furta, T. Okutani, and H. Sone, 'Computer control of a double inverted pendulum,' Computer and Elect. Engr., no. 5, pp. 67-84, 1978
  10. H. Nishimura, O. Ohnuki, K. Nonami, and T. Totani, 'Stabilizing and positioning control of inverted flexible pendulum by means of $H_{\infty}$ servo control with partial state feedback,' Proc. ASME 15th Biennial Conf. Vib. Noise, vol. 3, Part C, pp. 537-544, 1995
  11. F. Matsuno and M. Tanaka, 'Modeling and robust control of two flexible beams connected by a spring,' Proc. CDC, pp. 4216-4221, 1996 https://doi.org/10.1109/CDC.1996.577448
  12. F. Matsuno and T. Ohno, 'Distributed parameter control of a large space structure with lumped and distributed flexibility,' Proc. CDC, pp. 269-274, 1997 https://doi.org/10.1109/CDC.1997.650627
  13. J. S. Kim, 'QLQG/LTR control for hard nonlinear multivariable systems,' Instn. Mech. Engrs., J. Sys. And Contr. Eng., vol. 208, pp. 177-187, 1994
  14. S. I. Han and J. S. Kim, '$H_{\infty}$-Constrained quasilinear quadratic gaussian control with loop transfer recovery,' KSME Int. J., vol. 11, no. 3, pp. 255-266, 1997
  15. 한성익, 김종식, '구조화된 불확실성을 갖는 하드비선형 시스템에 대한 강인한 다변수 비선형 제어,' 한국정밀공학회, 제15권, 제12호, pp. 128-141, 1998
  16. J. C. Doyle, K. Zhou, and B. Bodenheimer, 'Mixed $H_2$\;and\;H_{\infty}$ control,' Proc. ACC, pp. 2502-2507, 1990
  17. H. H. Yeh, S. S. Banda, and B. C. Chang, 'Necessary and sufficient conditions for mixed $H_2\;and\;H_{\infty}$ optimal control,' IEEE, Trans. A. C., vol. 37, no. 3, pp. 355-358, 1992 https://doi.org/10.1109/9.119636
  18. D. S., Bernstein and W. M., Haddad, 'LQG control with an $H_{\infty}$ performance nound: a riccati equation approach,' IEEE Trans. A. C., vol. 34, no. 3, pp. 293-305, 1989 https://doi.org/10.1109/9.16419
  19. A. Gelb, W. E. Vander Velde, Multiple Input Describing Function and Nonlinear System Design, McGraw-Hill, 1968
  20. A. Suzuki, and C. V. Hedrick, 'Nonlinear controller design by an inverse random input describing function method,' Proc. ACC, pp. 1236-1241, 1985