폴리아닐린/나일론 6 복합직물의 전기 전도도 향상 연구

Conductivity Improvement of Polyaniline/Nylon 6 Fabrics

  • 오경화 (중앙대학교 가정교육학과) ;
  • 성재환 (한양대학교 섬유고분자공학과 기능성고분자신소재연구센타) ;
  • 김성훈 (한양대학교 섬유고분자공학과 기능성고분자신소재연구센타)
  • 발행 : 2000.09.01

초록

플라즈마 처리가 나일론 6 직물의 표면 특성과 폴리아닐린/나일론 6 복합직물의 전도도에 미치는 영향을 연구하였다. 산소 플라즈마로 처리한 나일론 6 직물의 표면을 XPS 분석을 통해 확인한 결과 C-O, C-OH 등의 관능기가 도입되었으며, 이는 직물과 폴리아닐린의 결합력을 향상시켜 전기 전도도와 폴리아닐린 부착량을 증가시켰다. 또한 산소 플라즈마로 처리된 폴리아닐린/나일론 6 복합직물은 세탁과 마모에서도 우수한 안정성을 나타내었다. 초음파 처리는 매질에 발생된 cavitation과 진동에 의해 직물 내부로 아닐린을 확산시키는데 효과적이었으며, 이는 폴리아닐린/나일론 6 복합직물의 전기 전도도를 크게 향상시켰다. 아닐린의 농도와 중합욕에 침지 휫수가 증가함에 따라 전기 전도도와 복합직물의 형태안정성에 대한 영향을 살펴보았는데, 단량체 농도는 0.5M 까지는 증가함에 따라 전도도가 향상되었으며, 침지 횟수가 증가함에 따라서도 전도도가 향상되었다.

Electrically conductive composites have been prepared by treating fabrics with oxidizing agent and exposing them to aniline, which deposited a substantial amount of conductive polymer within the interstices of the material. However the conductivity of the composite fabrics was limited by the irregular deposition of the conductive polymer layer. To improve the conductivity of polyaniline/nylon 6 composite fabrics, we modified the surface characteristics of nylon 6 fabrics by various plasma treatments and increased diffusion and adsorption of aniline by ultrasonic treatments. By the oxygen plasma treatment, attachment of functional groups such as C-O and C-OH increased on the surface of nylon 6 fiber, which promoted adhesion to polyaniline resulting in the higher add-on and electrical conductivity. Electrical conductivities of polyaniline/nylon 6 composite fabrics were highly increased by ultrasonic treatment, which assisted the diffusion of aniline into the inside of nylon fabrics by cavitation and vibration. Also, the effects of monomer concentration and the number of deposition cycles on the nylon 6 fabric conductivity Were investigated. As a result, the fabric conductivity increased with the monomer concentration and the number of polymerization deposition cycles.

키워드

참고문헌

  1. J. Polym. Sci., Polym. Chem. v.27 Y. Wei;K. F. Hsueh
  2. Polymer v.37 D. Abraham;A. Bhaeathi;S. V. Subramanyam
  3. Synth. Metals v.65 J. L. Forveille;L. Olmedo
  4. Synth. Metals v.28 R. V. Gregory;W. C. Kimbrell;H. H. Kuhn
  5. Textile. Res. J. v.63 C. L. Heisey;J. P. Wightman;E. H. Pittman;H. H. Kuhn
  6. J. Korean Soc. Clothing and Textiles v.23 K. H. Hong;E. A. Kim;K. W. Oh
  7. Synth Metals v.55 S. W. Byun;S. S. Im
  8. J. Korean Soc. Clothing and Textiles v.23 K. W. Oh;K. H. Hong
  9. Textile Chem. Color v.29 AH. H. Kuhn
  10. J. Appl. Polym. Sci. v.74 K. W. Oh;K. H. Hong;S. H. Kim
  11. ACS Polym. Mat. Sci. Eng. v.80 K. W. Oh;K. H. Hong;S. H. Kim
  12. Plasma Polymerization H. Yasuda
  13. Adhesion Sci. Technol. v.7 E. M. Liston;L. Martinu;J. Wertheimer
  14. J. Adhesion v.36 J. W. Chin;J. P. Wightman
  15. J. Adhesion Sci. Technol. v.7 L. J. Gerenser
  16. Korea Polymer J. v.2 S. H. Kim;S. Sawan
  17. ACS, Polym. Mat. Sci. Eng. v.76 S. H. Kim;D. K. Lim;S. G. Lee;Y. Y. Choi
  18. Plasma Science and Technology H. V. Boenig
  19. Applied Surface Science v.125 M. Keil;C. S. Rastmjee;A. Rajagopal;H. Sotobayashi;A. M. Bradshaw;C. L. A. Lamont;D. Gador;D. Buchberger;R. Fink;E. Umbach
  20. Appl. Surface Sci. v.125 M. Keil;C. S. Rastomjee;A. Rajagopal
  21. Macromolecules v.25 E. T. Kang;K. G. Neoh;K. L. Tan;Y. Uyama;N. Morikawa;Y. Ikada
  22. Macromolecules v.25 E. T. Kang;K. G. Neoh;K. L. Tan
  23. J. Polym. Sci., Polym. Chem. v.30 R. Foerch;D. H. Hunter
  24. J. Polym. Sci., Polym. Chem. v.15 H. Yasuda;H. C. Marsh
  25. J. of Korea Soc. of Dyers and Finishers v.8 M. Y. Seo;S. Y. Lee