EMG Pattern Classification using Soft Computing Techniques and Its Application to the Control of a Rehabilitation Robotic Arm

소프트 컴퓨팅 기법을 이용한 근전도 신호의 패턴 분류와 재활 로봇 팔 제어에의 응용

  • Han, Jeong-Su (Dept. of Electronic Computer Science, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jong-Seong ;
  • Song, Won-Gyeong (Dept. of Electronic Computer Science, Korea Advanced Institute of Science and Technology) ;
  • Bang, Won-Cheol (Dept. of Electronic Computer Science, Korea Advanced Institute of Science and Technology) ;
  • Lee, Hui-Yeong (Chonnam National Universityisy) ;
  • Byeon, Jeung-Nam (Dept. of Electronic Computer Science, Korea Advanced Institute of Science and Technology)
  • 한정수 (한국과학기술원 전자전산학과) ;
  • 김종성 (ETRI 인터넷 정보가전 연구부) ;
  • 송원경 (한국과학기술원 전자전산학과) ;
  • 방원철 (한국과학기술원 전자전산학과) ;
  • 이희영 (전남대학교 전자공학과) ;
  • 변증남 (한국과학기술원 전자전산학과)
  • Published : 2000.11.01

Abstract

In this paper, a new EMG pattern classification method based on soft computing techniques is proposed to help the disabled and the elderly handle rehabilitation robotic arm systems. First, it is shown that EMG is more useful than existing input devices such as voice, a laser pointer and a keypad in view of naturality, extensibility, and applicability. Then, a new procedure is proposed to select the minimal feature set. As methods of classifying the pre-defined motions, a fuzzy pattern classification and fuzzy min-max neural networks (FMMNN) are designed using the selected features. As results, the motions are recognized with success rates of 83 percent and 90 Percent using fuzzy pattern classification and FMMNN, respectively.

본 논문에서는 소프트 컴퓨팅 기법을 이용한 새로운 근전도 신호 패턴 분류 방법을 제안한다. 재활 로봇시스템에서 기존에 사용되었던 여러 가지 입력 장치(음성, 레이저 포인터, 키패드, 3차원 입력기 등)에 비해 근전도 신호를 이용한 방식이 가지는 장점을 서술한다. 기존의 근전도 신호 분류 방법의 문제점인 사용자 의존성을 줄이기 위해 제안한 사용자 독립적인 특징 선택 방법에 대해 상술한다. 선택된 특징 집합을 이용하여 퍼지 패턴 분류기 및 퍼지 최대-최소 신경망을 구성하여 학습 전(퍼지 패턴 분류기)과 학습 후(퍼지 최대-최소 신경망)에 각각 83%와 90%의 분류 성공률을 얻어 제안된 방법의 유용성을 확인할 수 있었다.

Keywords

References

  1. 한국보건사회연구원, 노인생활실태 분석 및 정책과제, 한국보건사회연구원, 1995
  2. Kazuhiko Kawamura, Sugato Bagchi, Moenes Iskarous, and Magued Bishay, 'Intelligent Robotic Systems in Service of the Disabled,' IEEE Tr. on Rehab. Eng., Vol. 3, No. 1, pp. 14- 21, March, 1995 https://doi.org/10.1109/86.372888
  3. Kazi, Z. Salganicoff M., Beitler, Chen S., Chester D. and Foulds R., 'Direct Manipulation of 3-D objects Through Multimodal Control: Towards a Robotic Assistant for People with Physical Disabilities,' ASEL technical Report #ROB9509, AI duPont Institute, Univ. of Delaware
  4. Carol A. Stanger, Carolyn Anglin, Wiliam S. Harwin, and Douglas P. Rornilly, 'Devices for Assisting Manipulation: A Summary of User Task Priorities,' IEEE Tr. on Rehab. Eng., Vol. 2, No.4, pp. 256-265, Dec., 1994 https://doi.org/10.1109/86.340872
  5. Jin-Woo Jung, Won-Kyung Song, Heyoung Lee, Jong-Sung Kim, Zeungnam Bien, 'A Study on the Enhancement of Manipulation ?Performance of Wheelchair-mounted Rehabilitation Service Robot', Proc. of ICORR 99, pp. 42-49, Stanford, California, U.S.A July 1-2, 1999
  6. Brenda Bigland and O. C. J. Lippold, 'The relation between force, velocity and integrated electrical activity in Human Muscles,' J. Physiology. Vol. 123, pp, 214-224, 1954
  7. 김성환 외, '골격근의 근전도 신호 분석을 위한 디지털 신호처리 시스템의 설계,' 의공학회지. 제17권, 제2호, pp. 155-164, 1996
  8. Arnon Cohen, Biomedical (vol 2), CRC Press Inc., 1986
  9. G. N. Saridis and T. Gootee, 'EMG pattern analysis and classification for a prosthetic arm,' IEEE Tr. Biomed Eng., Vol. BME-29, pp. 403-409, June 1982 https://doi.org/10.1109/TBME.1982.324954
  10. 장영건, 권장우, 한영환, 장원석, 홍승홍, '신경회로망과 확률모델을 이용한 근전도 신호의 패턴분류에 관한 연구', 전자공학회지, 제28권, 제10호, pp. 85-95, 1991
  11. Daisuke Nishikawa, Wenwei Yu, Hiroshi Yokoi and Yukinori Kakazu, 'EMG Prosthetic Hand Controller Discriminating Ten Motions using Real-Time Learning Method,' IROS '99, Vol. 3, pp. 1592-1597, Kyungju, Korea, 1999 https://doi.org/10.1109/IROS.1999.811706
  12. D. S. Dorcas, V. A. Dunfield and R. M. Scott, 'Improved myoelectric control system,' Med. Biol. Eng., Vol. 8, pp. 333-341, 1970
  13. Daniel Graupe and William K. Cline, 'Functional Separation of EMG Signals via ARMA Identification Methods for Prosthesis Control Purposes,' IEEE Tr. on Systems, Man, and Cybernetics, Vol. SMC-5, No.2, pp. 252-259, March 1975
  14. Osamu Fukuda, Toshio Tsuji, Akira Otsuka and Makoto Kaneko, 'An EMG-based Rehabilitation Aid for Prosthetic Control,' IEEE Int'l Workshop on Robot and Human Communication, Vol. 1, pp. 214-219, Takamutsu, Kagawa, Japan, Sep.30- Oct.2, 1998
  15. Yong-Sheng Yang, F. K. Lam, Francis H. Y. Chan, Yuan- Ting Zhang, Philip. A. Parker, 'A New Fuzzy Approach for Pattern Recognition with Application to EMG classification,' The 1996 IEEE Int'l Conf. on Neural Networks, VoL 2, pp. 1107- 1114, New York, USA, 1996 https://doi.org/10.1109/ICNN.1996.549053
  16. Keinosuke Fukunaga, Introduction to statistical pattern recognition, Academic Press, first edition, 1972
  17. Seok-Pil Lee, Jung-sub Kim, and Sang-hui Park, 'An Enhanced Feature Extraction Algorithm for EMG Pattern Classification,' IEEE Tr. on Rehab. Eng., Vol. 4, No.4, pp. 439-443, Dec. 1996 https://doi.org/10.1109/86.547948
  18. John V. Basmajian and Carlo J. De Luca, Muscle Alive, Williams & Wilkins, fifth edition, 1985
  19. P. Simpson, Fuzzy Min-Max Neural Networks-Part 1: Classification, IEEE Tr. on Neural Networks, Vol. 3, pp. 776- 786, Sep., 1992 https://doi.org/10.1109/72.159066
  20. W.-K. Song, H. Lee, and Z. Bien, 'KARES: Intelligent wheelchair-mounted robotic arm system using vision and force sensor', Robotics and Autonomous Systems, Vol. 28, No.1, pp. 83-94, 1999 https://doi.org/10.1016/S0921-8890(99)00031-7
  21. Pawlak, Z., Rough Sets: Theoretical Aspects and Reasoning about Data, Kluwer Academic Publishers, 1991