Abstract
Expression of xenobiotic-metabolizing enzymes can be altered by xenobiotics, which represents changes in the production of reactive metabolic intermediates as well as toxicities in tissues. Metabolic intermediates derived from xenobiotics are considered to produce the reactive oxygen species including drug free radicals and hydroxyl free radicals, which would be ultimately responsible for drug-induced toxicities. The effects of 1,2-benzothiazine anti-inflammatory agents on the expression of xenobiotic-metabolizing enzymes including major cytochrome P450s, microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) were studied in the liver with the aim of providing the part of information on potential production of reactive metabolites and hepatotoxicity by the agents. The synthetic compounds 24, 36 and 39 exhibited anti-inflammatory effects in rats as assessed by the Randall-Selitto method. The anti-inflammatory effect was detected as early as at 30 min after gavaging the agents with the ED5O being noted at 80 mg/kg, which was comparable to that of ibuprofen. Treatment of rats with each compound (100 mg/kg, 3d) resulted in no significant induction in the immunochemically-detectable cytochromes P45O 1A1/2, P450 2B1/2, P45O 2 Cl1 and P45O 2El. Changes in the mEN expression were also minimal, as evidenced by both Western blot and Northern blot analyses. Hepatic GST expression was slightly increased by the agents: GST Ya protein and mRNA expression was ~1.5-fold increased after treatment with compounds 24 and 39, whereas GST Yb1/2 and Yc1/2 mRNA levels were elevated 2- to 3-fold. In summary the effects of the synthetic 1,2-benzothiazines on the expression of major P45O, mEH and G57 were not significant, providing evidence that metabolic activation of the agents, potential drug interaction and hepatotoxicity would be minimal.