Fuzzy Classifier and Bispectrum for Invariant 2-D Shape Recognition

2차원 불변 영상 인식을 위한 퍼지 분류기와 바이스펙트럼

  • 한수환 (동의대학교 멀티미디어공학과) ;
  • 우영운 (동의대학교 컴퓨터공학과)
  • Published : 2000.06.01

Abstract

In this paper, a translation, rotation and scale invariant system for the recognition of closed 2-D images using the bispectrum of a contour sequence and a weighted fuzzy classifier is derived and compared with the recognition process using one of the competitive neural algorithm, called a LVQ( Loaming Vector Quantization). The bispectrum based on third order cumulants is applied to the contour sequences of an image to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to the represent two-dimensional planar images and are fed into a weighted fuzzy classifier. The experimental processes with eight different shapes of aircraft images are presented to illustrate a relatively high performance of the proposed recognition system.

이 논문에서는 2차원 영상의 외곽선 정보를 이용하여 추출한 바이스펙트럼과 가중치 퍼지 분류기를 이용하여 영상의 이동, 회전, 크기 변화에 무관한 패턴 인식 기법을 제안하고, 그 인식 결과를 LVQ(Learning Vector Quantization)를 이용한 신경망 분류기와 비교하였다. 3차 큐물런트를 근간으로하는 바이 스펙트럼은 각 영상의 외각선 정보에 적용되어 15개의 특징값들을 추출한다. 이 특징 벡터들은 영상의 이동, 회전, 크기 변화에 무관한 특징을 가지며 2차원 평면 영상의 대표값으로 사용되어 패턴 분류를 위해 가중치 퍼지 분류기의 입력으로 들어간다. 서로 다른 8가지 비행기들의 평면 영상을 이용하여 실험한 결과들은 제안된 인식 시스템의 성능이 상대적으로 우수함을 보였다.

Keywords