A Molecular Model for Light Signal Perception and Interdomain Crosstalk in Phytochrome Photoreceptors

  • Song, Pill-Soon (Department of Chemistry, University of Nebraska, Lincoln,Kumho Life&Environemntal Science Laboratory) ;
  • Park, Chung-Mo (Kumho Life & Environemntal Science Laboratory)
  • 발행 : 2000.09.01

초록

Phytochromes are red and far-red light absorbing photoreceptors for photomorphogenesis in plants. The red/far wavelength reversible biliproteins are made up of two structural domains. The light-perceiving function of the photoreceptor resides in the N-terminal domain, whereas the signal transducing regulatory function is located within the C-terminal domain. The characteristic role of the phytochromes as phtosensory molecular switches is derived from the phototransformation between two distinct spectral forms, the red light absorbing Pr and the far-red light absorbing Pfr forms. The photoinduced Pr Pfr phototransformation accompanies subtle conformational changes throughout the phytochrome molecule. The conformational signals are subsequently transmitted to the C-terminal domain through various inter-domain crosstalks and induce the interaction of the activated C-terminal domain with phytochrome interacting factors. Thus the inter-domain crosstalks play critical roles in the photoactivation of the phytochromes. Posttranslational modifications, such as the phosphorylation of Ser-598, are also involved in this process through conformational changes and by modulating inter-domain signaling.

키워드

참고문헌

  1. Science v.268 Phytochromes: Photosensory perception and signal transduction Quail, P. H.;Boylan, M. T.;Parks, B. M.;Short, T. W.;Xu, Y.;Wagner, D.
  2. 2nd Edition. Kluwer Academic Publishers Photomorphogenesis in plants Kendrick, R. E.;Kronenberg, G. H. M.(eds.)
  3. Proc. Natl. Acad. Sci. v.45 Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants Butler, W. L.;Norris, K. H.;Siegelman, H. W.;Hendricks, S. B.
  4. Proc. Natl. Acad. Sci. v.93 From seed germination to flowering, light controls plant development via the pigment phytochrome Chory J.;Chatterjee, M.;Cook, R. K.;Elich, T.;Fankhauser, C.;Li, J.;Nagpal, P.;Neff, M.;Pepper, A.;Poole, D.;Reed, J.;Vitart, V.
  5. Plant Cell Environ v.20 An emerging map of the phytochromes Quail, P. H.
  6. Proc. Natl. Acad. Sci. v.93 Chromophore-bearing NH₂-terminal domains of phytochromes A and B determine their photosensory specificity and differential light lability Wagner, D.;Fairchild, C. D.;Kuhn, R. M.;Quail, P. H.
  7. a novel basic helixloop-helix protein. Cell v.95 PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction Ni, M.;Tepperman, J. M.;Quail, P. H.
  8. Nature v.400 Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light Ni, M.;Tepperman, J. M.;Quail, P. H.
  9. Nature v.401 Phytochrome signaling is mediated through nucleoside diphosphate kinase 2 Choi, G.;Yi, H.;Kwon, Y. -K.;Soh, M. S.;Shin, B.;Luka, Z.;Hahn, T. -R.;Song, P. -S.
  10. Science v.284 PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis Fankhauser, C.;Yeh, K. -C.;Lagarias, J. C.;Zhang, H.;Elich, T. D.;Chory, J.
  11. bacteria and sensors for oxygen and redox v.TIBS 22 PAS domain S-boxes in Archaea Zhulin, I. B.;Taylor, B. L.;Dixon, R.
  12. clues to the origins of circadian clocks v.Science 276 PAS, present, and future Kay, S. A.
  13. Nature v.386 A prokaryotic phytochrome Hughes, J.;Lamparter, T.;Mittmann, F.;Hartmann, E.;Gartner, W.;Wilde, A.;Borner, T.
  14. Proc. Natl. Acad. Sci v.94 Characterization of recombinant phytochrome from the cyanobacterium Synechocystis Lamparter, T.;Mittmann, F.;Gartner, W.;Borner, T.;Hartmann, T.;hughes, J.
  15. Science v.286 Bacteriophytochromes: Phytochrome-like photoreceptors from nonphotosynthetic eubacteria Davis, S. J.;Vener, A. V.;Viestra, R. D.
  16. Ind. J. Biochem. Biophys v.33 Light signal transduction mediated by phytochromes: Preliminary studies and possible approaches Song, P. -S.;Sommer, D.;Wells, T. A.;Hahn, T. -R.;Park, H. -J.;Bhoo, S. H.
  17. Proc. Natl. Acad. Sci. v.95 Light-induced exposure of the cytoplasmic end of transmembrane helix seven in rhodopsin Abdulaev, N. G.;Ridge, K. D.
  18. Bioassays v.19 The phytochromes: A biochemical mechanism of signaling in sight? Quail, P. H.
  19. Biochemistry v.39 Chromophore: apoprotein interactions in Synechocystis sp. 6803 phytochrome Cph1. Park, C. -M.;Shim, J. -Y.;Yang, S. -S.;Kang, J. -G.;Kim, J. -I.;Luka, Z.;Song, P. -S.
  20. Biochemistry v.39 A second bacteriophytochrome from Synechocystis sp. PCC6803: Spectral analysis and downregulation by light Park, C. -M.;Kim, J. -I.;Kang, J. -H.;Yang, S. -S.;Kang, J. -G.;Shim, J. -Y.;Chung, Y. -H.;Park, Y. -M.;Song, P. -S.
  21. Biochemistry v.33 Phototransformation of pea phytochrome A induces an increase in ?-helical folding of the apoprotein: Comparison with a monocot phytochrome A and CD analysis by different methods Deforce, L.;Tokutomi, S.;Song, P. -S.
  22. Photochem. Photobiol v.56 The distance between the phytochrome chromophore and the N-terminal chain decreases during phototransformation: A novel fluorescence energy transfermethod using labeled antibody fragments Farrens, D. L.;Cordonnier, M. -M.;Pratt, L. H.;Song, P. -S.
  23. Biochemistry v.33 A conformational change associated with the phototransformation of Pisum phytochrome A as probed by fluorescent quenching Wells, T. A.;Nakazawa, M.;Manabe, K.;Song, P. -S.
  24. Biochemistry v.31 N-ter-minal domain of Avena phytochrome: Interactions with sodium dodecy1 sulfate micelles and N-terminal chain truncated phytochrome Parker, W.;Partis, M.;Song, P. -S.
  25. Biochim. Biophys. Acta v.996 Interactions between native oat phytochrome and tetrapyrroles Singh, B. R.;Song, P. -S.
  26. Biochemistry v.38 Protonation state and structural changes of the tetrapyrrole chromophore during the phototransformation of phytochrome: A resonance spectroscopic study Kneip, C.;Hildebrandt, P.;Schlamann, W.;Braslavsky, S. E.;Mark, F.;Schaffner, K.
  27. J. Biol. Chem. v.260 Structure function studies on phytochrome: Identification of light induced conformational changes in 124-kDa Avena phytochrome in vitro Lagarias, J. C.;Mercurio, F. M.
  28. J. Photochem. Photobiol. v.B2 The molecular topography of phytochrome: Chromophore and apoprotein Song, P. -S.
  29. Photochem. Photobiol v.45 Comparison of the protein conformations between different forms (Pr vs. Pfr) of native (124 kDa) and degraded(118/114 kDa) phytochromes from Avena Vierstra, R. D.;Quail, P. H.;Hahn, T. R.;Song, P. -S.
  30. Naturforsch. v.44c Electrophoresis and electrofocusing of phytochrome from etiolated Avena sativa L. Z. Schendel, R.;Rudiger, W.
  31. Biochemistry v.37 Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide Lapko, V. N.;Jiang, X. -Y.;Smith, D. L.;Song, P. -S.
  32. Planta v.164 The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L. Jones, A. M.;Vierstra, R. D.;Daniels, S. M.;Quail, P. H.
  33. Biochim. Biophy. Acta v.936 A photoreversible conformational change in 124 kDa Avena phytochrome Singh, B. R.;Chai, Y. G.;Song, P. -S.;Lee, J.;Robinson, G. W.
  34. Planta v.181 A differential molecular topography of the Pr and Pfr forms of native oat phytochrome as probed by fluorescence quenching Singh, B. R.;Song, P. -S.
  35. J. Biochem. Biophys. Meth. v.18 Use of bilirubin oxidase for probing chromophore topography in tetrapyrrole proteins Singh, B. R.;Choi, J.;Kwon, T.;Song, P. -S.
  36. In Topics in Fluorescence Spectroscopy v.2 Eftink, M. R.;Lakowicz JR(ed.)
  37. Plant Cell Physiol v.34 Identification of surface-exposed parts of red-light-and far-red-light-absorbing forms of native pea phytochrome by limited proteolysis Nakazawa, M.;Hayashi, H.;Yoshida, Y.;Manabe, K.
  38. Science v.284 SPA1, a WD-repeat protein specific to phytochrome A signal transduction Hoecker, U.;Teppermann, J. M.;Quail, P. H.
  39. Nature v.400 Tripping the light fantastic Smith, H.
  40. Plant Physiol v.104 Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development Reed, J. W.;Nagatani, A.;Elich, T. D.;Fagan, M.;Chory, J.
  41. Plant Physiol v.104 The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A Shinomura, T. Nagatani, A. Chory, J.;Furuya, M.
  42. Current Topics in Plant Physiology Novel phytochromes control germination and end-of-day far-red light responses of Arabidopsis thaliana Whitelam, G. C.;Devlin, P. F.;Briggs WR(eds.);Heath RL(eds.);Tobin E(eds.)
  43. Plant Cell Environ v.20 Chromophore: apoprotein interactions in phytochrome A. Song, P. -S.;Park, M. H.;Furuya, M.
  44. J. Biochem. Mol. Biol. v.32 Interdomain signal transmission within the phytochromes Bhoo, S. H.;Kwon, Y. K.;Song, P. -S.
  45. Inter-domain interactions in the Pr and Pfr forms of oat phytochrome A probed by cross-linking(unpublished) Song, P. -S.
  46. J. Mol. Biol. v.287 Alignment of the two domains of the hairpin ribozyme-sub-strate complex defined by interdomain photoaffinity cross-linking Pinard, R.;Heckman, J. E.;Burke, J. M.
  47. Z. Naturforsch v.43c Topography of the phytochrome molecule as determined from chemical modification of SH-groups Eilfeld, P. H.;Widerer, G.;Malinovski, H.;Rudiger, W.;Eilfeld, P. H.
  48. Biochemistry v.38 Structural features and light-dependent changes in the sequence 59-75 connecting helices Ⅰ and Ⅱ in rhodopsin: A site-directed spinlabeling study Altenbach, C.;Klein-Seetharaman, J.;Hwa, J.;Khorana, H. G.;Hubbell, W. L.
  49. Photochem. Photobiol. v.49 A purified 124-kDa oat phytochrome does not possess a protein kinase activity Kim, I. S.;Bai, U.;Song, P. S.
  50. Photochem. Photobiol. v.56 Signal transduction by phytochrome: Phytochromes have a module related to the transmitter modules of bacterial sensor proteins Schneider Poetsch, H. A.
  51. FEBS Lett. v.315 Biochemical evidence that phytochrome of the moss Ceratodon purpureus is a light-regulated protein kinase Algarra, P.;Linder, S.;Thummler, F.
  52. Plant Physiol v.91 Properties of a polycation-stimulated protein kinase associated with purified Avena phytochrome Wong, Y. S.;McMichael, Jr. R. W.;Lagarias, J. C.
  53. Science v.277 A cyanobacterial phytochrome two-component light sensory system Yeh, K. C.;Wu, S. H.;Murphy, J. T.;Lagarias, J. C.
  54. Curr. Opin. Plant Biol. v.2 Phytochromes are Pr-specific kinases Reed, J. W.
  55. Cell v.91 Phytochrome: If it looks and smells like a histidine kinase, is it a histidine kinase? Elich, T. D.;Chory, J.
  56. Proc. Natl. Acad. Sci. v.95 Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry Yeh, K. C.;Lagarias, J. C.
  57. J. Biol. Chem v.261 Phosphorylation of Avena phytochrome in vitro as a probe of light-induced conformational changes Wong, Y. S.;Cheng, H. C.;Walsh, D. A.;Lagarias, J. C.
  58. FEBS Lett. v.282 Protein phosphorylation in isolated nuclei from etiolated Abena seedlings: Effects of red/far-red light and cholera toxin Romeo, L. C.;Biswal, B.;Song, P. -S.
  59. Biochemistry v.29 Phosphopeptide mapping of Avena phytochrome phosphorylated by protein kinases in vitro McMichael, R. W. Jr.;Lagarias, J. C.
  60. Biochemistry v.35 Protein kinase A-catalyzed phosphorylation and its effect on conformation in phytochrome A Lapko, V. N.;Wells, T. A.;Song, P. -S.
  61. Biochemistry v.36 Posttranslational modification of oat phytochrome A: Phosphorylation of a specific serine in a multiple serine cluster Lapko, V. N.;Jiang, X. Y.;Smith, D. L.;Song, P. -S.
  62. FEBS Lett. v.393 A possible tyrosine phosphorylation of phytochrome Sommer, D.;Wells, T. A.;Song, P. -S.
  63. Protein Sci. v.8 Mass spectrometric characterization of oat phytochrome A: Isoforms and posttranslational modifications Lapko, V. N.;Jiang, X. Y.;Smith, D. L.;Song, P. -S.
  64. Annu. Rev. Biophys. Biomol. Struct. v.22 The effects of phosphorylation on the structure and function of proteins Johnson, L. N.;Barford, D.
  65. Biochemistry v.39 Effects of phosphorylation on binding of catecholamines to tyrosine hydroxylase: Specificity and thermodynamics Ramsey, A. J.;Fitzpatrick, P. F.
  66. J. Biol. Chem. v.274 mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47(phox): Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular inter-action in p47(phox), thereby activating the oxidase Ago, T.;Nunoi, H.;Ito, T.;Sumimoto, H.
  67. J. Biol. Chem. v.275 Arrestin binding to the M2 muscarinic acetylcholine receptor is precluded by an inhibitory element in the third intracellular loop of the receptor Lee, K. B.;Ptasienski, J. A.;Pals-Rylaarsdam, R.;Gurevich, V. V.;Hosey, M. M.
  68. Proc. Natl. Acad. Sic. v.95 Phosphorylation of photolyzed rhodopsin is calcuim-insensitive in retina permeabilized by α-toxin Otto-Bruc, A. E.;Fariss, R. N.;Hooser, J. P. V.;Palczewski, K.
  69. J. Biol. Chem. v.274 How does arrestin respond to the phosphorylated state of rhodopsin Vishnivetskiy, S. A.;Paz, C. L.;Schubert, C.;Hirsch, J. A.;Sigler, P. B.;Gurevich, V. V.
  70. J. Biol. Chem. v.268 Chaperonim-mediated reconstitution of the phytochrome photoreceptor Grimm, R.;Donaldson, G. K.;van der Vies, S. M.;Schafer, E.;Gatenby, A. A.
  71. Plant Mol. Biol. v.21 In vivo suppression of phytochrome aggregation by the GroE chaperonins in Escherichia coli Edgerton, M. D.;Santos, M. O.;Jones, A. M.
  72. Photomorphogenesis in plants The use of transgenic plants to examine phytochrome structure/function Cherry, J. R.;Vierstra, R. D.;Kendrick RE(eds.);Kronberg GHM(eds.)
  73. Proc. Natl. Acad. Sci. v.88 Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis Boylan, M. T.;Quail. P. H.
  74. J. Amer. Chem. Soc. v.119 Phytochrome photochromism probed by site-directed mutations and chromophore esterification Bhoo, S. H.;Hirano, T.;Jeong, H. -Y.;Lee, J. -G.;Furuya, M.;Song, P. -S.
  75. Biochemistry v.32 Mutational analysis of the pea phytochrome A chromophore pocker: Chromophore assembly with apophytochrome A and photoreversibility Deforce, L.;Furuya, M.;Song. P. -S.
  76. regulation of plant growth and development by light Spectroscopic and structural requirements for photoreceptors: Phytochromes Wells, T. A.;Lapko, V. N.;Moon, D. -K.;Bhoo, S. H.;Song, P. -S.;Briggs WR(eds.);Heath RL(eds.);Tobin EM(eds.)