Preparation and Oxygen Permeability of True-IPN's based on Silicone Rubber and Polystyrene

실리콘 고무와 폴리스틸렌을 이용한 True-IPNs의 제조 및 산소투과 특성

  • Kim, Jun-Hyun (Department of Industrial Chemistry College of Engineering, Keimyung University) ;
  • Byun, Hong-Sik (Department of Industrial Chemistry College of Engineering, Keimyung University)
  • 김준현 (계명대학교 공과대학 공업화학과) ;
  • 변홍식 (계명대학교 공과대학 공업화학과)
  • Published : 2000.12.01

Abstract

The true-lPN's based on silicone rubber(SR)rrubbery polymer) and polystyrenc(PS)(glass polymer) were prepared by using the sequential IP!\' method_ The characteristic of permeability of oxygen/nitrogen was investigated with the control of the amount of PSOO-70 wt%) in the true-lPN, As a results of fTlR and N1Vm. the SRIPS membrane was synthesised successfully with the IPN synthetic method, Thermal analysis resulls indicated that the degree of mixing of IPN increased with increase of the amount of PS in the IPN. Regarding the characteristic of gas permeability, the membrane showed a trend of decrease in oxygen permeability as the PS content increased, The oxygen permeability of membrane having 50 wt% of PS. however, increased momentarily, Selectivity, meanwhile, increased slightly as the contents of I'S increased. However, the maximum value of oxygen selectivity, which is 20.6% enhanced Value, was obtained with the membrane containing 50 wt% of PS. This can be explained that the behavior of lPN, i.e. mutual assistance, is pronounced in the membrane having 50 wt% of PS.

실리콘 고무(고무상고분자)와 폴리스틸렌(유리상고분자)을 이용하여 true-IPN을 합성하였다. 합성방법은 단계(sequential) IPN(interpenetrating polymer net- work) 제조방법이며, 이때 IPN 내의 폴리스틸렌 함량을 10-70 wt%로 변화시켜 폴리스틸렌의 함량에 따른 산소/질소의 투과특성을 조사하였다. FTIR과 NMR의 결과 단계IPN 합성법으로 실리콘고무-폴리스틸렌의 IPN분리막이 제조되었음을 확인하였으며, 열분석 결과 폴리스틸렌의 함량이 증가할수록 실리콘고무와 폴리스틸렌의 혼합도(degree of mixing)가 증가한다는 것을 알 수 있었다. 기체투과특성 조사에서는 폴리스틸렌의 함량이 증가할수록 산소투과도는 감소하는 경향이 있었으나, 50wt% 폴리스틸렌이 함유된 분리막에서 일시적인 증가를 보여주었다. 또한 선택도는 폴리스틸렌의 함량이 증가하면서 약간 증가하다, 50wt% 폴리스틸렌이 함유된 분리막에서 20.6% 향상된 최대 값을 얻을 수 있었다. 이것은 폴리스틸렌이 50wt%인 분리막에서 IPN의 상호보완적인 성질이 가장 잘 나타난 결과라고 할 수 있다.

Keywords

References

  1. Membrane Separation Systems: Recent Development and Future Directions, Gsa Separation W. J. Koros;R. W. Baker(et al.)(Eds.)
  2. Handbook of Separation Process Technology Separation of Gaseous Mixtures Using Polymer Membranes W. J. Koros;R. T. Chern;R. W. Rousseau(ed.)
  3. Membrane J. v.4 no.2 오상열;최기석
  4. Ind. Eng. Chem. v.49 K. Kammermeyer
  5. Chem. Eng. Sci. v.38 S. L. Matson;J. Lopez;J. A. Quinn
  6. Membrane J. v.6 no.2 박영규;이영무
  7. Synthetic Polymeric Membranes, Permeablility and Sorption of Hydrocarbons in Polyvinyltrimethysilane Yu. P. Yampolskii;B. Sedlacek(ed.);J. Kaboves(ed.)
  8. J. Appl. Polym. Sci. v.38 Jun Seo Park
  9. I&EC Proc. Des. Dev. v.8 P. K. Gantzel;U. Merten
  10. Material Science of Synthetic Membranes, v.269 Aromatic Polyamide Membranes H. H. Hoehn;D. R. Lloyd(ed.)
  11. Separation Sci. and Tech v.15 J. M. S. Henis;M. K. Tripodi
  12. Advances in Chemistry Series Interpenetrating Polymer Networks D. Klempner;L. H. Sperling;L. A. Utracki (eds.)
  13. Materials Forum v.13 H. S. Byun;R. P. Burford;Y. W. Mai
  14. J. Appl. Polym. Sci. v.21 A. A. Donatelli;L. H. Sperling;D. A. Thomas
  15. J. Appl. Polym. Sci. v.26 J. Michel;S. C. Hargest;L. H. Sperling
  16. Polymer Blends and Composites J. A. Manson;L. H. Sperling
  17. 계명대학교 석사학위 논문 SR/PMMA Semi-IPN's의 제조 및 산소투과특성 황명윤
  18. Macromolecules v.33 J. S. Tuner;Y. L. Cheng
  19. Sep. Pur. Tech v.14 P. Billard;Q. T. Nguyen;C. Leger;R. Clement
  20. Polymer(Korea) v.14 전은진;김성철
  21. J. Membrane. Sci. v.114 L. Liang;E. Ruckenstein
  22. Polym. for Advanced Technol. v.8 Q. T. Nguyen;C. Leger;P. Billard;P. Lochon
  23. J. Membrane. Sci. v.110 L. Liang;E. Ruckenstein
  24. Adv. Polym. Tech v.13 no.1 R. Greco;M. F. Astarita;A. Fiedlerova;E. Borsig
  25. Styrene-Based Plastics and Their Modification Toughness modification L. Rosik;P. Svec(ed.);L. Rosik(ed.);RNdr. Horak(ed.);F. Vecerka(ed.)
  26. Crosslinked Polymers Semi-inter-penetrating Networks based on Triazine Thermoset and N-Alkylamide Thermoplastics T.A. Feldman;S.J. Huang;R. A. Dickie(ed.);S. S. Labana(ed.);R. S. Baner(ed.)
  27. Thermochimica Acta v.315 M. Song;D. J. Hourston;F. U. Schafer;H. M. Pollock;A. Hammiche
  28. Polym. Eng. Sci. v.20 W. M. Lee