Stress Responses of the Escherichia coli groE Promoter

  • Published : 2000.02.01

Abstract

GroEL is well known as a molecular chaperone. In order to determine the dynamic stress response of the Escherichia coli groE promoter, a groE-lacZ operon fusion in the chromosome was constructed. Stress leading to ${\sigma}^{32}$ synthesis induces transcription from E. coli groE promoter, since the promoter is ${\sigma}^{32}-regulated$. When the strain was stressed with ethanol, phenol, and sodium chloride, clear inductions of ${\beta}-galactosidase$ were observed. Two types of simultaneous stresses of sodium chloride and phenol induced the enze much more than either of the two alone, suggesting that stress was an additive. The combined stress resulted in the highest induction of the enzyme in this system. The groE-lacZ fusion strain developed in this study can conveniently be used to detect other harmful pollutants in the environment. Stress treatment of cells containing recombinant proteins, which need GroEl, by ethanol, phenol, or sodium chloride, might have a tendency to increase their biological activities.

Keywords

References

  1. Proc. Natl. Acad. Sci. USA Consensus sequence for Escherichia coli heat shock gene promoters Cowing, D. W.;J. C. A. Bardwell;E. A. Craig;C. Woolford;R. W. Hendrix;C. A. Gross
  2. J. Bacteriol. v.171 The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. Fayet, O;T. Ziegelhoffer;C. Georgopoulos.
  3. J. Bacteriol. v.180 uspB, a new $σ^s$ regulated gene in Escherichia coli which is required for stationary-phase resistance to ethanol. Farwell, A.;K. Kvint;T. Nystrom
  4. Nature v.337 GroE heat-shock proteins promote assembly of goreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Goloubinoff, P.;A. A. Gatenby;G. H. Lorimer
  5. Appl. Environ. Microbiol. v.65 Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhzobium meliloti. Gouffi, K.;N. Pica;V. Pichereau;C. Blanco.
  6. Nature v.333 Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Hemmingsen, S.;M. C. Woolford;S. M. van der Vies;K. Tilly;D. T. Dennis;C. P. Georgopoulos;R. W. Hendrix;R. J. Ellis
  7. Gene v.146 Nucleotide sequence of the Escherichia coli groE PROMOTER. Lindler, L. E.
  8. Mol. Microbiol. v.5 The molecular basis of carbon-starvation induced general resistance in Escherichia coli Matin, A.
  9. Appl. Environ. Microbiol. v.65 Osmoadaptation in Archaea. Martin, D. D.;R. A. Ciulla;M. F. Roberts
  10. J. Biol. Chem. v.266 Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. Mendoza, J. A.;E. Rogers;G. H. Lorimer;P. M. Horowitz.
  11. A Short Course in Bacterial Genetics Miller, J. H.
  12. Biochem. Biophys. Res. Commun v.100 Positive regulatory gene for temperature-controlled proteins in Escherichia coli. Neidhardt, F. C.;R. A. VanBogelen.
  13. Nature v.344 Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins in E. coli. Phillips, G. J.;T. J. Silhavy.
  14. Mol. Microbiol. v.7 TraM of plamid R1 regulates its own expression. Schwab, M.;H. Reisenzein;G. Hogenauer.
  15. J. Virol v.68 Heat-shock reponse to vaccinia virus infection Sedger, L;J. Rudy
  16. Gene v.23 Improved single and multicopy lac-based cloning vectors for protein and operon fusions Simons, R. W.;F. Houman;N. Kleckner.
  17. Protein Expr. Purif. v.2 Effect of ethanol and low-temperature culture on expression of soybeam lipoxygenase L-1 in Escherichia coli Steczko, J.;G. A. Donoho;J. E. Dixon;T. Sugimoto;B. Axelrod.
  18. Appl. Biochem. Biotechnol. v.66 Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli Thomas, J. G.;A. Ayling;F. Baneyx.
  19. J. Biol. Chem. v.271 Protein misfolding and inclusion body formation in recombinant Escherichia coli cell overexpressing heat-shock proteins Thomas, J. G.;F. Baneyx
  20. Appl. Environ. Microbiol. v.177 Synergistic induction of the heat schock response in Escherichia coli by simultaneous treatment with chemical inducers. Van Dyk. T. K.;T. R. Reed;A. C. Vollmer;R. A. LaRossa
  21. Appl. Environ. Microbiol. v.60 Rapid and sensitive pollution detection by induction of heat shock gene-bioluminescence gene fusions. Van Dyk, T. K.;W. R. Majarian;K. B. Konstantinov;R. M. Young;P. S. Dhurjati;R. A. LaRossa
  22. Appl. Environ. Microbiol. v.61 Responses to toxicants of an Escherichia coli strain carrying a uspA'::lux genetic fusion and an E. coli strain carrying a grpE'::lux fusion are similar. Van Dyk, T. K.;D. R. Smulski;T. R. Reed;S. Belkin;A. C. Vollmer;R. A. LaRossa
  23. Mol. Microbiol. v.16 Repair, refold, recycle: How bacteria can deal with spontaneous and enviromental damage to proteins. Visick, J. E.;S. Clarke.
  24. Annu. Rev. Microbiol. v.47 Regulation of the heat-shock response in bacteria Yura, T.;H. Nagai;H. Mori
  25. J. Bacteriol. v.170 Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor $σ^32$ Zhou, Y.-N;N. Kusukawa;J. W. Erickson;C. A. Gross;T. Yura