References
- Proc. Natl. Acad. Sci. USA Consensus sequence for Escherichia coli heat shock gene promoters Cowing, D. W.;J. C. A. Bardwell;E. A. Craig;C. Woolford;R. W. Hendrix;C. A. Gross
- J. Bacteriol. v.171 The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. Fayet, O;T. Ziegelhoffer;C. Georgopoulos.
-
J. Bacteriol.
v.180
uspB, a new
$σ^s$ regulated gene in Escherichia coli which is required for stationary-phase resistance to ethanol. Farwell, A.;K. Kvint;T. Nystrom - Nature v.337 GroE heat-shock proteins promote assembly of goreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Goloubinoff, P.;A. A. Gatenby;G. H. Lorimer
- Appl. Environ. Microbiol. v.65 Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhzobium meliloti. Gouffi, K.;N. Pica;V. Pichereau;C. Blanco.
- Nature v.333 Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Hemmingsen, S.;M. C. Woolford;S. M. van der Vies;K. Tilly;D. T. Dennis;C. P. Georgopoulos;R. W. Hendrix;R. J. Ellis
- Gene v.146 Nucleotide sequence of the Escherichia coli groE PROMOTER. Lindler, L. E.
- Mol. Microbiol. v.5 The molecular basis of carbon-starvation induced general resistance in Escherichia coli Matin, A.
- Appl. Environ. Microbiol. v.65 Osmoadaptation in Archaea. Martin, D. D.;R. A. Ciulla;M. F. Roberts
- J. Biol. Chem. v.266 Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. Mendoza, J. A.;E. Rogers;G. H. Lorimer;P. M. Horowitz.
- A Short Course in Bacterial Genetics Miller, J. H.
- Biochem. Biophys. Res. Commun v.100 Positive regulatory gene for temperature-controlled proteins in Escherichia coli. Neidhardt, F. C.;R. A. VanBogelen.
- Nature v.344 Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins in E. coli. Phillips, G. J.;T. J. Silhavy.
- Mol. Microbiol. v.7 TraM of plamid R1 regulates its own expression. Schwab, M.;H. Reisenzein;G. Hogenauer.
- J. Virol v.68 Heat-shock reponse to vaccinia virus infection Sedger, L;J. Rudy
- Gene v.23 Improved single and multicopy lac-based cloning vectors for protein and operon fusions Simons, R. W.;F. Houman;N. Kleckner.
- Protein Expr. Purif. v.2 Effect of ethanol and low-temperature culture on expression of soybeam lipoxygenase L-1 in Escherichia coli Steczko, J.;G. A. Donoho;J. E. Dixon;T. Sugimoto;B. Axelrod.
- Appl. Biochem. Biotechnol. v.66 Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli Thomas, J. G.;A. Ayling;F. Baneyx.
- J. Biol. Chem. v.271 Protein misfolding and inclusion body formation in recombinant Escherichia coli cell overexpressing heat-shock proteins Thomas, J. G.;F. Baneyx
- Appl. Environ. Microbiol. v.177 Synergistic induction of the heat schock response in Escherichia coli by simultaneous treatment with chemical inducers. Van Dyk. T. K.;T. R. Reed;A. C. Vollmer;R. A. LaRossa
- Appl. Environ. Microbiol. v.60 Rapid and sensitive pollution detection by induction of heat shock gene-bioluminescence gene fusions. Van Dyk, T. K.;W. R. Majarian;K. B. Konstantinov;R. M. Young;P. S. Dhurjati;R. A. LaRossa
- Appl. Environ. Microbiol. v.61 Responses to toxicants of an Escherichia coli strain carrying a uspA'::lux genetic fusion and an E. coli strain carrying a grpE'::lux fusion are similar. Van Dyk, T. K.;D. R. Smulski;T. R. Reed;S. Belkin;A. C. Vollmer;R. A. LaRossa
- Mol. Microbiol. v.16 Repair, refold, recycle: How bacteria can deal with spontaneous and enviromental damage to proteins. Visick, J. E.;S. Clarke.
- Annu. Rev. Microbiol. v.47 Regulation of the heat-shock response in bacteria Yura, T.;H. Nagai;H. Mori
-
J. Bacteriol.
v.170
Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor
$σ^32$ Zhou, Y.-N;N. Kusukawa;J. W. Erickson;C. A. Gross;T. Yura