Survey on Applications of control Theories to Wired and Wireless Communication

유무선 통신에서의 제어 이론 적용에 대한 연구 개관

  • Kwon, Wook-Hyun (Dept.of Electronics Engineering, Seoul National University) ;
  • Kim, Hyung-Seok (Dept.of Electronics Engineering, Seoul National University)
  • 권욱현 (서울대학교 전기공학부) ;
  • 김형석 (서울대학교 전기공학부)
  • Published : 2000.08.01

Abstract

Wired and wireless communication technique is growing rapidly. As the number of communication users is larger problems such as network congestion and signal interference between users are getting most important, There have been researches that try to solve them by control theoretic approaches. They apply various control theories to the control issues of communication. this paper surveys these researches and classifies them into ATM TCP/IP and wireless communication according to the target. The feedback control model of each communication protocol is shown and related researches are summarized and analyzed.

Keywords

References

  1. 권욱현, 이준화, '제어 이론 개요,' 제어.자동화.시스템공학회지, vol. 1, no. 2, pp. 5-13, 1995. 09
  2. Andrew S. Tanenbaum, Computer networks, Prentice-Hall, 1996
  3. K. S. Gilhousen, I. M. Padovani, A. J. Viterbi, L. A. Weaver, and C. E. Wheatley, 'On the capacity of a cellular CDMA system,' IEEE Trans. Veh. Technol., vol. 40, pp. 303-312, May, 1991 https://doi.org/10.1109/25.289411
  4. E. Altman, T. Basar, Srikant R., 'Congestion control as a stochastic control problem with action delays,' Automatica, vol. 35,no. 12, pp. 1937-1950, 1999 https://doi.org/10.1016/S0005-1098(99)00127-2
  5. H. J. Kushner, 'Analysis of controlled multiplexing systems via numerical stochastic control methods,' IEEE Journal on Selected Areas in Communications, pp. 1207-1218, vol. 13, Sept., 1995 https://doi.org/10.1109/49.414640
  6. L. Benmohamed, S. M. Meerkov, 'Feedback control of congestion in packet switching networks: the case of a single congested node,' IEEE/ACM Transactions on Networking, vol. 1, pp. 693-708, Dec., 1993 https://doi.org/10.1109/90.266057
  7. A. Kolarov, G. Ramamurthy, 'A control-theoretic approach to the design of an explicit rate controller for ABR service,' IEEE/ACM Transactions on Networking, vol. 7, no. 5, pp. 741-753, Oct., 1999 https://doi.org/10.1109/90.803387
  8. A. Kolarov, G. Ramamurthy, 'A control-theoretic approach to the design of closed loop rate based flow control for high speed ATM networks,' Proc. of Infocom '97, pp. 293-301, 1997 https://doi.org/10.1109/INFCOM.1997.635145
  9. D. Gaiti, Boukhatem, 'Cooperative congestion control schemes in ATM network,' IEEE Communications Magazine, pp. 102-110, vol. 34, Nov., 1996 https://doi.org/10.1109/35.544199
  10. Yongdong Zhao, San-Qi Li, 'Feedback control of multiloop ABR traffic inpresence of CBR/ABR traffic transmission,' IEEE International Conference on Communications '96, pp. 1717-1721, 1996 https://doi.org/10.1109/ICC.1996.535300
  11. S. Mascolo, D. Cavendish, M. Gerla, 'ATM rate based congestion control using a Smith predictor: an EPRCA implementation,' Proc. of INFOCOM '96, pp. 569-576, March, 1996 https://doi.org/10.1109/INFCOM.1996.493350
  12. S. Mascolo, M. Gerla, 'Classical control approach to congestion avoidance in ATM high speed network,' Proceedings of the IEEE ATM'97 Workshop, pp. 361-367, 1997 https://doi.org/10.1109/ATM.1997.624704
  13. C. Kwan, R. Xu, L. Haynes, C. Chou, and E. Geraniotis, 'Fast flow control in high-speed communication networks,' IEEE CDC 98, pp. 2139-2140, 1998 https://doi.org/10.1109/CDC.1998.758653
  14. B. G. Kim, J. S. Ma, 'Theoretic framework of network feedback control with long delays,' Proceedings on Computer Communications and Networks, pp. 463-468, Oct., 1999 https://doi.org/10.1109/ICCCN.1999.805559
  15. D. R. Vaman, Xuedao Gu, S. Kumar, Xiaomei Qian, and T. M. Oser, 'A flow control strategy for ATM networks based on a unified performance parameter,' GLOBECOM '93, pp. 1822-1826, vol. 3, 1993 https://doi.org/10.1109/GLOCOM.1993.318381
  16. B. K. Kim and C. Thompson, 'Optimal feedback control of ABR traffic in ATM networks,' Proc. IEEE GLOBECOM '98, pp. 844-848, 1998 https://doi.org/10.1109/ICC.1998.685129
  17. B. K. Kim, C. Thompson, 'ABR traffic control in ATM networks using optimal control theory,' IEEE International Conference on ATM, pp. 327-333, 1998 https://doi.org/10.1109/ICATM.1998.688195
  18. O. C. Imer, T. Basar, 'Optimal solution to a team problem with information delays : An application in flow control for communication networks,' Proc. of conference on decision and control, vol. 3, pp. 2697-2702, 1999 https://doi.org/10.1109/CDC.1999.831337
  19. E. Altman T. Basar, 'Optimal rate control for high speed telecommunication networks,' Proc. of CDC, pp. 1389-1394, vol. 2, 1995 https://doi.org/10.1109/CDC.1995.480294
  20. H. Zhang, O. W. Yang, 'Design of robust congestion controllers for ATM networks,' Proc. IEEE INFOCOM '97, pp. 302-309, April, 1997 https://doi.org/10.1109/INFCOM.1997.635146
  21. C. E. Rohrs, R. A. Berry, S. J. O'Halek, 'A control engineer's look at ATM congestion avoidance,' GLOBECOM '95, pp. 1089-1094, 1995 https://doi.org/10.1109/GLOCOM.1995.502572
  22. C. E. Rohrs, R. A. Berry, 'A linear control approach to explicit rate feedback in ATM networks,' Proc. IEEE INFOCOM '97, pp. 293-301, April, 1997 https://doi.org/10.1109/INFCOM.1997.635141
  23. R. Izmailov, 'Adaptive feedback control algorithms for large data transfers in high-speed networks,' IEEE Transactions on Automatic Control, pp. 1469-1471, vol. 40, Aug., 1995 https://doi.org/10.1109/9.402243
  24. Chung-Ju Chang Ray-Guang Cheng, 'Traffic control in an ATM network using fuzzy set theory,' INFOCOM '94, pp. 1200-1207, vol. 3, June, 1994 https://doi.org/10.1109/INFCOM.1994.337570
  25. C. Kwan, R. Xu, . Haynes, C. Chou, and E. Geraniotis, Fast flow control in high-speed communication networks, IEEE CDC'98, pp. 2139-2140, 1998 https://doi.org/10.1109/CDC.1998.758653
  26. Narvaez, P., Kai-Yeung Siu, 'Optimal feedback control for ABR service in ATM,' Proceedings on Network Protocols '97, pp. xi+309, 1997 https://doi.org/10.1109/ICNP.1997.643688
  27. S. Keshav, 'A control-theoretic approach to flow control,' Proc. ACM SIGCOMM '91, pp. 3-15, Sept., 1991 https://doi.org/10.1145/115992.115995
  28. E. Altman, T. Basar, R. Spikant, 'Multi-user rate-based flow control with action delays: A Team-Theoretic Approach,' IEEE CDC '97, pp. 2387-2392, 1997 https://doi.org/10.1109/CDC.1997.657144
  29. Congestion avoidance and control, Proc. ACM SIGCOMM '88, pp. 314-329 https://doi.org/10.1145/52325.52356
  30. Berkeley TCP evolution from 4.3-table to 4.3-reno, Proc. of the 18th internet Engineering Task Force,
  31. S. Mascolv, 'Classical control theory for congestion avoidance in high-speed Internet,' IEEE CDC '99, pp. 2709-2714, 1999 https://doi.org/10.1109/CDC.1999.831339
  32. S. Mascolo, 'Smith's predictor for congestion control in TCP internet protocol,' ACC '99, pp. 4441-4445, 1999 https://doi.org/10.1109/ACC.1999.786418
  33. H. Ohsaki, M. Murata, T. Ushio, H. Miyahara, 'A control theoretical approach to a window-based flow control mechanism with explicit congestion notification,' IEEE CDC '99, pp. 2715-2720, 1999 https://doi.org/10.1109/CDC.1999.831340
  34. H. Ohsaki M. Murata, T. Ushio, H. Miyahara, 'Stability analysis of window-based flow control mechanism in TCP/IP networks,' Proc. of IEEE conference on control applications, pp. 1603-1606, 1999 https://doi.org/10.1109/CCA.1999.801211
  35. G. Hasegawa, M. Murata, H. Miyahara, 'Fairness and stability of congestion control mechanisms of TCP,' INFOCOM '99, pp. 1329-1336, vol. 3, March, 1999 https://doi.org/10.1109/INFCOM.1999.752151
  36. U. Madhow, 'Dynamic congestion control and error recovery over a heterogeneous internet,' CDC '97, pp. 2368-2374, 1997 https://doi.org/10.1109/CDC.1997.657138
  37. S. Ariyavisitakul, L. F. Chang, 'Signal and interference statistics of a CDMA system with feedback power control,' IEEE Trans. on communications, vol. 41, no. 11, pp. 1626-1634, Nov. 1993 https://doi.org/10.1109/26.241743
  38. J. M. Rulnick, N. Bambos, 'Power control and time division: The CDMA versus TDMA question,' IEEE INFOCOM, pp. 631-641, 1997 https://doi.org/10.1109/INFCOM.1997.644515
  39. F. Gummarsson J. Blov,, F. Gustafasson, 'Power control algorithms and stability analysis for radio network control,' IEEE CDC'98, pp. 2041-2042, 1998 https://doi.org/10.1109/CDC.1998.758632
  40. M. L. Sim, E. Gunawan, C. B. Soh, and B. H. Soong, 'Study on the characteristics of predictive closed-loop power control algorithms for a cellular DS/CDMA system,' Proc. of ICUPC '98, vol. 2, pp. 981-985, 1998 https://doi.org/10.1109/ICUPC.1998.733653
  41. Q. Shen, W. A. Krzymien, 'Performance improvement of closed loop power control in CDMA cellular mobile communication systems,' Proc. of Vehicular Technology Conference, pp. 56-60, 1996 https://doi.org/10.1109/VETEC.1996.503407
  42. J. M. A. Tanskanen, A. Huang, T. L. Laakso, S. J. Ovaska, 'Prediction of received signal power in CDMA cellular systems,' Proc. of Vehicular Technology Conference, pp. 922-926, 1995 https://doi.org/10.1109/VETEC.1995.505003
  43. J. M. A. Tanskanen, J. Mattila, M. Hall, T. Korhonen, S. J. Ovaska, 'Predictive closed loop power control for mobile CDMA systems,' Proc. of Vehicular Technology Conference, vol. 2, pp. 934-938, 1997 https://doi.org/10.1109/VETEC.1997.600466
  44. Kin K. Leung, 'Kalman-filter method for power control in broadband wireless networks ,' INFOCOMM, pp. 948-956, 1999
  45. Po-Rong Chang, Bor-Chin Wang, 'Adaptive fuzzy proportional integral power control for a cellular CDMA system with time delay,' IEEE J. on selected areas in comm., vol. 14, pp. 1818-1829, Dec., 1996 https://doi.org/10.1109/49.545704
  46. C. C. Wu, D. P. Bersekas, 'Distributed power control algorithms for wireless networks,' CDC '99, pp. 3556-3561, 1999 https://doi.org/10.1109/CDC.1999.827903
  47. L. Song, J. M. Holtzman, 'CDMA dynamic downlink power control,' IEEE Proc. of Vehicular Technology Conference, pp. 1101-1105, 1998 https://doi.org/10.1109/VETEC.1998.686410