A Simulation study on the Cardiac Current Density distribution during the Defibrillation Shock

제세동 쇼크에 의한 심장 전류밀도 분포에 관한 시뮬레이션 연구

  • Lee, J. (Department of Biomedical Engineering, College of Health Science and Research Institute of Medical Engineering, Yonsei University) ;
  • Park, K. L. (Department of Biomedical Engineering, College of Health Science and Research Institute of Medical Engineering, Yonsei University) ;
  • Lee, K. J. (Department of Biomedical Engineering, College of Health Science and Research Institute of Medical Engineering, Yonsei University)
  • 이전 (연세대학교 보건과학대학 의용전자공학과, 의공학연구소) ;
  • 박광리 (연세대학교 보건과학대학 의용전자공학과, 의공학연구소) ;
  • 이경중 (연세대학교 보건과학대학 의용전자공학과, 의공학연구소)
  • Published : 2000.08.01

Abstract

This paper is about to simulate the defibrillation situations using 3D FE(finite element) thorax model and describes the effects of three clinical electrodes' positions and size and organ's resistivity used in simulation on the characteristics of current density distribution over myocardium. The model was constructed with a eillipsoidal cylinder for the thorax and the 2D Visible Human images for remains. And, the distributions of current density were computed by a commercial program ANSYS 5.4. The electrical shock of the AP(anterior-posterior ) electrode provided more current flows with heart than the others and that of the LL(lateral-lateral) electrode showed the most uniform current density distribution. However, the electrode size had little effect on the current density distribution. In the evaluation of model's sensitivity to tissue resistivity variation, the variation of the myocardium's resistivity most affected the minimum, average and maximum current densities.

본 연구는 3차원 유한요소 몸통 모델을 이용한 제세동 시뮬레이션 연구로서, 제세동 자극인가시 임상에서 사용되는 세가지 전극의 위치와 크기가 심장에서의 전류밀도 분포특성에서 미치는 영향과 시뮬레이션에 사용되는 조직의 비저항 값이 시뮬레이션 결과에 미치는 영향에 대하여 시뮬레이션 하였다. 몸통 모델은 타원형 실린더를 사용하여 흉곽을 모델링하였고, 나머지 부분은 Visible Human의 2차원 영상들을 통하여 3차원 모델링을 하였다. 그리고, ANSYS 5.4를 통하여 유한요소의 전류밀도 해를 구하였다. AP(anterior-posterior) 전극 위치의 경우, 몸통 표면에서 인가한 전류가 가장 효과적으로 심장으로 흘러들어 갔으며, LL(Lateral-lateral) 전극 AP(anterior-posterior) 전극 위치의 경우, 몸통 표면에서 인가한 전류가 가장 효과적으로 심장으로 흘러들어갔으며, LL(lateral-lateral) 전극위치는 가장 균일한 전류밀도 분포특성을 나타내었다. 그러나, 전극의 크기변화는 전류밀도 분포특성에 거의 영향을 주지 않았다. 조직의 비저항 값의 변화에 대한 전류밀도 분포 실험결과는 심근의 비저항 값의 변화가 최소·평균·최대 전류밀도 해에 가장 큰 영향을 주었다.

Keywords

References

  1. Third Edition Defibrilation;what you should know Paula J. Crockett;Beth M. Droppert;Sandra E. Higgins
  2. American Journal of Cardiology v.36 Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium D.P. Zipes;J. Fischer;R.M. King;A. Nicoll;W.W. Jolly
  3. Circulation v.73 no.5 Comparison of the defibrillation threshold and the upper limit of ventricular vulne-rability Peng-Sheng Chen;N. Shibata;E.G. Dixon;R.O. Ma-rtin;R.E. Ideker
  4. Journal of Cardio-vascular Electrophysiology v.9 no.5 Progressive Depolariza-tion;A Unified Hypothesis for Defibrillation and Fibrillation Induction S.M. Dillon;K.F. Kwaku
  5. Biophysical Journal v.74 De-excitation of Cardiac Cells A. Pumir;G. Romey;V. Krinsky
  6. IEEE Trans. Biomed. Eng v.40 Effect of paddle placement and size on defibrillation current distribution;A three dimensional finite element model W.J. Karlon;S.R. Eisenberg;J.I. Lehr
  7. Circulation v.77 no.5 Energy, current, and success in defibrillation and cardiocersion;clinical studies using an automated impedance -based method of energy adjusment R.E. Kerber;J.B. Martins;M.G. Kienzle;L. Constantin;B. Olshansky;R. Hopson;F. Charbonnier
  8. American Journal of Cardiology v.36 Termination of ventricular fibrillation in dogs by depoarizing a critical amount of myocar-dium D.P. Zipes;J. Fischer;R.M. King;A. Nicoll;W.W. Jolly
  9. Medical & Biomedical Engineering & Computing v.35 Ventricular defibrillation threshold;Strength-duration and percent-success curves L.A. Geddes;W.A. Tracker;C.F. Babbs;J.D. Bour-land
  10. IEEE Transactions on Biomedical Engineering v.42 no.6 A Three-Dimensional Finite Element Model of Human Transthoracic Defibrillation;Pad-dle Placement and Size Marc A. Camacho;John L. Lehr;Solomon R. Eisenberg
  11. Annals of Biomedical Engineering v.26 Influence of Ansiotropy on Local and Global Measures of Poten-tial Gradient in Computer Model of Defibrillation James Eason;John Schmidt;Andrew Dabasinskas;Greg Siekas;Natalia Trayanova
  12. IEEE Transactions on Biome-dical Engineering v.42 no.2 Optimization of Cardiac Defibrillation by Three-Dimensional Finite Element Modeling of the Human Thorax D. Panescu;J.G. Webster;W.J. Tompkins;R.A. Stratbucker
  13. IEEE Transactions on Biomedical Engineering v.44 no.8 The Effects of Inhomogeneities and Anisotropies on Electrocardiographic Fields;A 3-D Finite-Element Study Ruth Nicholson Klepfer;Christopher R. Johnson;Robert S. Macleod
  14. PACE v.22 Defibillation Efficacy of Different Electrode Placements in a Human Thorax Model A.L. De Jongh;E.G. Entcheva;J.A. Replogle;R.S. Booker;B.H. Kennight;F.J. Claydon
  15. IEEE Transactions on Biomedical Engineering v.37 no.4 Finite Element Analysis of Cardiac Defib-rillation Current Distribution Nestor G. Sepulveda;John P. Wikswo Jr.;Debra S. Echt
  16. Comput. Biol. Med. v.22 A computer model for the study of electrical current flow in the human thorax C.R. Johnson;R.S. MacLeod;P.R. Ershler
  17. Med. Biol. Eng. v.5 The specific resistance of biological material, a compendium of data for the biomedical engineer and physiologist L.A. Geddes;L.E. Baker
  18. Crit. Rev. Biomed. Eng v.17 Dielectric properties of tissures and biological materials;A critical review K.R. Foster;H.P. Schwan
  19. AAMI 19th Anna. Meet. Resistivity of skeletal musclle, skin, fat, and lung to defibrillator type shocks W.A. Tacker;J. Mereer;P. Foley;S. Cuppy
  20. IEEE Trans. Biomed. Eng. v.42 no.2 Computational Studies of Transthoracic and Transvenous Defibrillation in a Detailed 3-D Human Thorax Model Dawn Blilie Jorgenson;David R. Haynor;Gust H. Bardy;Yongmin Kim
  21. IEEE EMBS 15th Annual Conference Thoracic Current Pathways for Different Size and Position External Defibrillation Electrodes based on a 3D Model Robert Patterson;Li Wang
  22. Medical & Biologi-cal Engineering & Computing v.27 Effects of cardiac configuration, paddle place-ment and paddle size on defibrillation current dis-tribution;a finite-element model L.F. Ramirez;S.R. Eisenberg;J.L. Lehr;F.J. Sc-hoen
  23. in AAMI 16th Anna. Meet. In vitro resistivity of canine heart to defibrillation shocks L. deGaravilla;W.A. Tacker;L.A. Geddes;J.D. Bourland;C.F. Babbs
  24. M.S. thesis Resistivity of canine myocardial tis-sue and blood to defibrillator-type shocks L. deGaravilla
  25. Med. Biol. Eng. v.BME-33 Electrical resistivity of lung at 100 kHz D.A. Witsoe;E. Kinnen